На главную

Статья по теме: Структурных особенностей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Г В настоящее время свыше двадцати стран мира выпускают синтетические каучуки, обладающие широким диапазоном структурных особенностей и комплексом физических свойств. | Блестяще подтвердилось научное предвидение С. В. Лебе-[1, С.8]

Твердофазная полимеризация - полимеризация мономеров, находящихся в кристаллическом или стеклообразном состоянии. Дальний порядок и фиксированное расположение молекул в кристаллическом мономере обусловливают ряд кинетических и структурных особенностей твердофазной полимеризации. Наиболее распространенным способом инициирования такой полимеризации является радиационный (^-лучи, быстрые электроны, рентгеновские лучи); возможно также термическое, химическое и фотохимическое инициирование. Природа активных центров растущих цепей при твердофазной полимеризации определяется природой мономера и способом инициирования, и ими могут быть радикалы, катионы и анионы.[7, С.38]

Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура жидкости непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц, приводящих к изменению ближнего порядка, степени микрорасслоения и других структурных особенностей жидкости. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего в области некоторой температуры стеклования Тс равновесие в ближнем порядке практически уже не успевает устанавливаться и структура жидкости фиксируется *. Отсюда следует, что в данном стекле структура примерно такая же, как у его расплава при температуре стеклования. Жидкость можно застекловать не только путем понижения температуры, но и повышением давления. Стеклование может происходить при некотором давлении рс из-за уменьшения подвижности частиц вследствие возрастания межмолекулярного взаимодействия и уменьшения свободного объема.[3, С.36]

Изучение деформируемости пленки полимера непосредственно в спектрометре ЯМР позволяет обнаружить и количественно оценить ориентацию цепей. Результаты метода ЯМР дают представление о характере соединения атомных групп в цепи (оценка числа структурных образований «голова к голове» и «голова к хвосту»). Особенно важные сведения можно получить методом ЯМР при изучении структурных особенностей етереорегулярных полимеров, в частности, определить содержание изо- или синдиотактических триад. Аналогичная информация о конфигурации цепей может быть получена, и для сополимеров.[2, С.271]

Понятие о кинетически стабильных элементах структуры в полимерах не имеет строгого количественного критерия, но чем больше т* при прочих равных условиях, тем больше кинетическая стабильность данного элемента структуры. Практически же под кинетически стабильными понимаются те флуктуационные структурные элементы, время жизни которых превышает длительность исследуемого процесса. К образованию флуктуационных структур, характеризуемых большей или меньшей кинетической стабильностью, способны все гибкоцепные полимеры, в том числе эластомеры. С точки зрения структурных особенностей эластомеров их можно считать высокомолекулярными жидкостями с более сложной структурой, чем простые жидкости. Эластомеры находятся в жидком агрегатном состоянии, но отличаются очень высокой вязкостью, поэтому их можно назвать полимерными высоковязкими жидкостями. С другой стороны, эластомеры из-за их высокой вязкости при недлительных нагружениях по своим механическим свойствам подобны упругим твердым телам. К твердым телам относятся как кристаллические, так и аморфные тела (стекла). Жидкости характеризуются непрерывно изменяющейся структурой, которая зависит от температуры Т и давления р. Для твердых же тел характерна неизменность структуры в области существования твердого состояния с данным типом структуры. Таким образом, твердое состояние вещества отличается от жидкого не только структурой, но и ее постоянством при изменении внешних условий. При этом для кристаллов характерны наличие дальнего порядка и термодинамическая стабильность, а для стекол — наличие ближнего порядка и кинетическая стабильность (время жизни структурных элементов в стекле обычно существенно выше времени наблюдения).[3, С.25]

Некоторые из структурных особенностей полимера, а именно: распределение связей или групп атомов вдоль макромолеку-лярных цепей, плотность упаковки цепей и их жесткость — определяют величину межмолекулярных и внутримолекулярных сил и, следовательно, предел деструкции как меру эффективности процесса.[22, С.34]

Все сказанное выше свидетельствует о том, что различные параметры не одинаково чувствительны к изменению структуры полимерных систем под влиянием деформирования. Это позволяет эффективно использовать механические измерения для опенки структурных особенностей полимеров.[4, С.246]

В производстве синтетических смол необходимо применять такие методы анализа, которые давали бы возможность охарактеризовать исходные сырьевые материалы, обеспечить контроль производственного процесса и определить качество полученных продуктов. Кроме того, для исследователей, занимающихся разработкой синтеза новых смол или применением существующих смол в новых областях, представляет интерес определение некоторых структурных особенностей исследуемых смол. Исследования с применением подобных методов способствуют развитию технологии пластических масс и улучшению свойств полимеров.[9, С.11]

Новой областью применения ХПЭ является модификация пластмасс, получаемых из отходов. Как известно, в отходах и утильсырье основными (полимерными компонентами являются ПЭ и ПВХ. Совместимость этих полимеров улучшается при добавлении ХПЭ.. Считается, -что ХПЭ повышает адгезию на границе фаз в смеси несовместимых полимеров и уменьшает размер -частиц несовместимых полимеров в смеси. Пластмассы, модифицированные ХПЭ обладают удовлетворительными свойствами. Введение ХПЭ весьма существенно увеличивает предельное удлинение при разрыве и энергию разрушения при некотором снижении -прочности и модуля упругости. Этот эффект наиболее значителен в смесях с высоким _содержанием ПЭ низкой плотности и ПВХ, менее значителен в смесях с полистиролом и сополимерами .винилхлорида. Модифицирующее действие ХПЭ -в значительной -степени зависит от структурных особенностей полимера:- содержания хлора, степени кристалличности .-и т. д. '[35].[8, С.113]

Вследствие высокой жесткости цепей и сильного межмолекулярного взаимодействия целлюлоза имеет температуру плавления, лежащую значительно выше температуры ее термического распада и поэтому в отсутствие растворителей всегда находится в твердом агрегатном состоянии смешанного аморфно-кристаллического фибриллярного строения, характерного для большинства линейных полимеров. В физической структуре целлюлозы обычно выделяют два уровня: надмолекулярный, имея под этим в виду особенности строения наиболее мелких по размеру структурных элементов — фибрилл, содержание упорядоченной (кристаллической) и аморфной части, а также морфологический, отражающий взаимное расположение фибрилл и строение самих волокон, т. е. их геометрическую форму, наличие слоистой структуры. Целлюлоза была первым объектом исследования, на примере которого познавались особенности структуры полимеров. Поэтому не удивительно, что для объяснения ее структурных особенностей предложено большое число моделей, превышающее несколько десятков, подробно рассмотренных в ряде обзоров [13, 14]. Тем не менее, ни одна из предложенных моделей не объясняет все экспериментальные факты, что обусловливает необходимость дальнейших исследований [15].[12, С.19]

Недавние исследования показали также новые возможности методов ИПД для получения нано структурных сплавов с метаста-бильной структурой и фазовым составом (см. гл. 2). Как уже отмечалось, было установлено, например, полное растворение цементита и формирование пересыщенного твердого раствора углерода в армко-Fe в случае высоколегированной стали, подвергнутой ИПД [66], а таже образование пересыщенных твердых растворов в А1 сплавах с исходными взаимно нерастворимыми фазами [67]. Формирование таких метастабильных сотояний позволяет ожидать получения особопрочных материалов после последующих отжигов. Вместе с тем, структура этих образцов характеризуется не только малым размером зерен и большеугловыми разориен-тировками соседних зерен, но также специфической дефектной структурой границ зерен, необычной морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д. В связи с этим, очень важным является изучение комплексного влияния структурных особенностей нано-материалов на их механическое поведение.[5, С.183]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
6. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
9. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
15. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
16. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
17. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
18. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
19. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
20. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
21. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
22. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
23. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
24. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
25. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
26. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
27. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
28. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
29. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
30. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
31. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную