На главную

Статья по теме: Существенное уменьшение

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Близкие результаты были получены при исследовании Си, полученной ИПД консолидацией порошков после шарового размола [81]. Было показано, что рентгенограмма порошка Си, подвергнутого измельчению в шаровой мельнице в течение 100 ч (рис. 1.395), представляет собой набор характерных для исходного Си порошка рентгеновских пиков (рис. 1.39о). В то же время относительная интенсивность рентгеновских пиков существенно отличается (табл. 1.2). Обращает на себя внимание существенное уменьшение относительной максимальной интенсивности всех рентгеновских пиков по сравнению с рентгеновским пиком (111). Все пики на рентгенограммах порошка Си, измельченного в шаровой мельнице в течение 100 ч (рис. 1.396), и массивного образца Си, сконсолидированного из этого порошка ИПД кручением под высоким давлением (рис. 1.39в), характеризуются значительным уширением.[3, С.57]

Известно, что каждая частица вещества в отсутствие внешних силовых полей находится под воздействием двух конкурирующих энергетических факторов: теплового движения и межмолекулярного взаимодействия. При нагревании вещества тепловое движение молекул и их ассоциатов становится интенсивнее, в результате чего возрастают среднестатистические расстояния между частицами. Так как все виды межмолекулярного взаимодействия (диполь-дипольное, индукционное, дисперсионное, водородная связь и т.п.) ослабевают обратно пропорционально шестой степени расстояния между взаимодействующими частицами, то очевидно, что при нагревании полимера происходит существенное уменьшение межмолекулярного взаимодействия и повышение подвижности макромолекул.[1, С.123]

Для прочного слипания двух твердых тел необходимо обеспечить тесный контакт между их поверхностями, поскольку ван-дер-вааль-совы силы оказываются пренебрежимо малыми, если расстояние между молекулами превышает несколько ангстрем. Боуден и Тейлор [5] установили, что из-за существования микрошероховатостей на поверхности контакта (рис. 4.2) фактическая площадь контакта составляет очень небольшую часть номинальной площади контакта. Для адгезии твердых тел большое значение имеет не только величина фактической площади контакта, но также и отсутствие на поверхности контакта различных органических загрязнений или оксидов, наличие которых существенно уменьшает прочность адгезионного соединения. Существенное уменьшение площади фактического контакта может произойти из-за эластического восстановления пиков поверхностных шероховатостей, развивающегося после снятия нормальной нагрузки, обеспечивающей прижатие друг к другу контактирующих твердых тел. Чтобы предотвратить это уменьшение площади фактического контакта, необходимо произвести отжиг контактирующих поверхностей под действием сжимающей нагрузки. Часто для увеличения поверхности фактического контакта между двумя твердыми телами вводят слой жидкости, которая, затвердевая, обеспечивает необходимую для эксплуатации прочность адгезионного соединения.[2, С.82]

Существенное уменьшение коэффициента активности СтК в простых эвтектических смесях сера—СтК и ОБС—СтК связано с совпадением Тэв с температурой ее полиморфного превращения [245], приводящего к энергетически более выгодной моноклинной сингонии.[6, С.45]

Существенное уменьшение сопротивления pv наблюдается также при снижении контактного сопротивления между частицами наполнителя, напр, при покрытии порошка никеля тонким слоем серебра. Исследование эффекта Холла в эпоксидной смоле, наполненной смесью каолина и графита, показало наличие в такой системе после ее термообработки проводимостей р- и гс-типов.[11, С.479]

Наблюдаемое существенное уменьшение скорости замещения при[4, С.329]

Аналогичный подход в случае ИПД Си [135] привел к значению температуры Дебая «зернограничной фазы» бгз = 131 ± 1 К. Столь существенное уменьшение температуры Дебая в приграничных областях отражает тот факт, что расположенные здесь атомы обладают повышенной энергией. Более того, температурю)-[3, С.114]

Приведенные результаты позволяют сделать вывод о том, что на границе раздела с твердым телом, равно как и на границе раздела полимер — газ, происходит существенное уменьшение молекулярной подвижности полимерных цепей. Этот факт экспериментально доказан на большом числе аморфных полимеров с применением термодинамических, структурных и механических методов и считается сейчас твердо установленным. Однако вывод об изменении молекулярной подвижности явился результатом исследований свойств наполненных систем и покрытий, свойств, которые в конечном итоге определяются молекулярной подвижностью.[7, С.180]

Как результат этого любое растрескивание, которое имелось перед тепловой обработкой, значительно увеличивается по площади после прогрева. В противоположность этому в случае III подобное существенное уменьшение объема обычно происходит только в одном направлении, пцлтендикулярном поверхности субстрата. Причина этого, вероятно, в том, что аутоадгезия между контактирующими частицами, которая возникает прежде, чем наступает усадка пленки (частицы должны стать мягкими и липкими прежде, чем они смогут течь и деформироваться), достаточно равномерна и сильна для «поглощения» такого сжимающего напряжения без локальных разрывов, приводящих к растрескиванию. А это возможно при условии, что частицы не только превращаются из сфер в многоугольники, но и значительно сплющиваются до «лепешко-подобных» многоугольников.[9, С.285]

В то же время, на термограммах образцов СтЦ было заметно существенное влияние резкого охлаждения расплавленного образца и скорости его нагрева на величину АНпл (147,66 Дж/г при скорости нагрева 10°С в мин и 100,68 Дж/г для резко охлажденного расплава, сканированного при скорости 40°С в мин). Существенное уменьшение АНпл сгеарата цинка при резком охлаждении расплава от 150°С до -50°С свидетельствует о том, что при его кристаллизации происходит формирование дефектных кристаллов.[6, С.296]

Для характеризации полимеров с некоторой степенью кристалличности применяется метод дифференциальной сканирующей калориметрии (ДСК). С его помощью определяются теплота плавления и, следовательно, степень кристалличности в привитых и не привитых образцах. Изменения кристалличности ПЭ в результате прививки вызывает небольшое (2,5°) смещение положения максимума на кривой плавления и существенное уменьшение площади под кривой [69]. Подобный эффект наблюдался при проведении прививки ПП и ПЭ/ЭВА смесей [70]. В то время как уменьшение температуры плавления (отражаемое сдвигом на кривой плавления) показывает, что прививка вызывает некоторые изменения кристалличности, сравнение площадей под кривыми до и после прививки свидетельствует о незначительности эффекта. Полагая, что различия в площадях зависят только от различия в количестве ПЭ или ПП (то есть различием в степени кристалличности пренебрегаем), процент прививки можно вычислить из соотношения:[12, С.220]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
4. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
5. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
6. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
7. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
8. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
9. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
10. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
14. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную