На главную

Статья по теме: Увеличению интенсивности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Противоток изменяет профиль скоростей в канале и приводит к увеличению интенсивности циркуляции поперек канала; никакого течения материала назад фактически не возникает. Поэтому такой противоток иногда называют «кажущимся». Хотя поток и движется частично по каналу назад, но сам канал движется вперед, и поэтому течения назад относительно цилиндра не существует [1].[5, С.245]

Интенсивность кипения реакционной среды оказывает влияние на формирование зерен ПВХ в процессе суспензионной полимеризации ВХ. Возрастание тепловой нагрузки на ОК приводит к увеличению интенсивности кипения реакционной среды и уменьшению агрегатов-ной устойчивости капель полимеризующейся эмульсии. Причиной снижения агрегативной устойчивости может служить десорбция высокомолекулярных стабилизаторов с поверхности капель полимеризующейся эмульсии при испарении ВХ. С повышением тепловой нагрузки на ОК размер частиц ПВХ увеличивается. При включении ОК после р * 0,2 существенного влияния на размер частиц образующегося полимера не наблюдается.[7, С.76]

Двойное облучение при сигнале НА приводит к поглощению и испусканию для НА- В результате этого через флуктуирующие магнитные векторы возбуждается релаксационный механизм протона Нв. Спин-решеточная релаксация протона Нв ускоряется, способствуя увеличению интенсивности ЯМР-сигнала Нв на 10—50%.[6, С.329]

Спектрофотометрические исследования в УФ-области позволяют определить тип соединения мономеров в цепи ("голова к голове" или "голова к хвосту"), относительное содержание структур 1,2- или 1,4- в полидиеновых полимерах, наличие цис-транс-изомерии. По уменьшению интенсивности линий, соответствующих двойной связи ОС, и увеличению интенсивности линий, соответствующих одинарной связи С-С, можно судить о скорости процесса полимеризации. Метод пригоден для определения степени кристалличности пленок из полихлоропрена при комнатных и повышенных температурах.[3, С.194]

Отметим, что длина зоны плавления обратно пропорциональна величине ф, т. е. она пропорциональна массовому расходу и обратно пропорциональна интенсивности плавления. Ясно, что влияние условий работы (технологических параметров) на длину зоны плавления можно оценить через параметр Ф из (12.2-20). Таким образом, увеличение частоты вращения червяка при постоянном расходе приводит к увеличению интенсивности плавления, так как оба эти фактора (скорость вращения и интенсивность плавления) улучшают условия отвода расплава (Vbx увеличивается), а тепловыделения за счет работы сил вязкого трения увеличиваются. При повышении температуры цилиндра первоначально происходит увеличение интенсивности плавления, так как количество тепла, подводимого за счет теплопроводности, пропорциональное выражению km (Тъ — 7"т), возрастает, Однако в связи с тем что дальнейшее увеличение температуры цилиндра сопровождается уменьшением вязкости пленки расплава и уменьшением тепловыделений за счет работы сил вязкого трения, существует оптимальная температура, при которой достигается максимальная интенсивность плавления. Итак, повышение температуры нерасплавленного материала Та0, поступающего из зоны питания, увеличивает интенсивность плавления и снижает ZT.[1, С.445]

Из рис. 1.25 видно, что интенсивность уменьшается с ростом размера частиц. С другой стороны, невыгодно и уменьшать определенный диаметр частиц. Если частицы полностью прозрачны,, дальнейшее их измельчение не приведет к увеличению интенсивности цвета.[9, С.35]

Значительные изменения- претерпевают пластификаторы под воздействием ^-излучения в присутствии ПВХ [88]. С увеличением дозы излучения процессы деструкции углубляются. Наиболее стойким в присутствии ПВХ оказался диметил-о-фталат, наименее— бутилбензил-о-фталат. После облучения кислотное число всех пластификаторов в присутствии ПВХ возрастает больше, чем в отсутствие ПВХ, что связывают с влиянием хлористого водорода, выделяющегося из ПВХ. Кроме того, повышение значения исходного кислотного числа пластификаторов способствует увеличению интенсивности окраски и кислотности пластификаторов {88]. .[4, С.113]

Наиболее широкое распространение пол^чилл методы молекулярной спектроскопии (инфракрасная спектроскопия и й*етод спектров комбинационного рассеяния), а также метод ядерного магнитного резонанса (ЯМР). При помощи этих методов можно обнаружить различные функциональные группы, содержащиеся в полимерной цепи (например, галогены, нитрильные, карбонильные и другие группы, которые образуются в полимере в результате реакций окисления). Спектроскопические исследования позволяют определить тип соединения мономеров в цепи («голова к голове» или «голова к хвосту»), относительное содержание структур I—2 и 1—4 в пол неновых полимерах, наличие цис- и т/?*шоизомерии. По уменьшению интенсивности линий, соответствующих двойной связи С = С, и увеличению интенсивности линий, соответствующих ординарной связи С—С, можно судить о скорости пронесса полимеризации.[2, С.98]

меров кристаллитов (рекристаллизация при отжиге), которые приводят к увеличению интенсивности, и процессы частичного плавления, уменьшающие число и продольный размер кристаллитов, что вызывает понижение интенсивности. Уменьшение интенсивности связано также с тепловыми колебаниями атомов. В обратимых циклах, когда изменение Lno незначительно, основное влияние на значения интенсивности оказывают эффекты частичного плавления при нагреве (кристаллизация при охлаждении) и теплового движения атомов в кристаллической решетке. Быстрое возрастание интенсивности при охлаждении со 110 до 100° в первом цикле вызвано, кроме того, дальнейшим увеличением боковых размеров кристаллитов. Поэтому во втором и последующих циклах, когда боковые размеры кристаллитов имеют наибольшие значения, наблюдается повышенное значение интенсивности в области максимальных температур нагрева (пунктирная линия на рис. 1) по сравнению с первым циклом.[10, С.210]

на примере действия азотной кислоты на полиэтилен показал (рис. Ы), что диффузия, не осложненная химической реакцией, характеризуется плавной кривой ABG. Взаимодействие между диффундирующей средой и полимером приводит к увеличению интенсивности диффузии. На рисунке это выражается в разрывах кривой ABCDEF и изменениях углов наклона касательной к оси абсцисс (Y2>'Yi>Yo)-[8, С.10]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
5. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
7. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
8. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
9. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
10. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.

На главную