На главную

Статья по теме: Плавления Температура

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Температура плавления - температура, при которой происходит плавление кристаллической фазы полимера.[1, С.406]

Если полимер имеет очень высокий молекулярный вес, он может показывать аномально высокую Тт вследствие высокой вязкости расплава. Некоторые полимеры разлагаются до плавления. Температура, при которой происходят такие явления, должна быть отмечена так же, как Ту или область Тт.[2, С.64]

Наряду с таким чисто эмпирическим и интуитивным подходом представляет интерес другое направление в физике и химии полимеров, связанное с количественным анализом влияния химического строения на физические свойства полимеров и с предсказанием этих свойств. Это направление появилось лишь 10—15 лет назад. Речь идет о том, чтобы без привлечения какого-либо эксперимента, исходя из данных только по химическому строению повторяющегося звена и типу присоединения звеньев друг к другу, рассчитать важнейшие физические пара-' метры полимера. В результате, написав на бумаге формулу повторяющегося звена полимера, который предполагается синтезировать, можно заранее определить такие характеристики^, как температура стеклования, температура плавления, температура начала интенсивной термодеструкции, плотность полимера, оптические и оптико-механические параметры (показатель преломления и коэффициенты оптической чувствительности), плотность энергии когезии, растворимость и диффузия,, механические показатели, коэффициент объемного расширения и др.[6, С.4]

Температура, теплота и энтропия плавления[7, С.124]

Эта достаточно грубая гипотеза позволила синтезировать новые теплостойкие полимеры, что подтвердило сформулированное выше мнение о том, что гибкость макромолекул, а также интенсивность межмолекулярного взаимодействия отражают особенности молекулярного строения полимера (т. е. структуру сегментов цепи). Например, если рассмотреть ряд простых полиэфиров общей формулы [—(GH2)m—О—]„, то температура плавления снижается от 180 °С для первого члена ряда — полиоксиметилена (т = 1) до 66 °С для полиоксиэтилена (т = 2) и далее до 37 °С для полиоксациклобутана (т = 3); однако при дальнейшем возрастании т температура плавления достигает 137 °С для полиэтилена (т = оо). Это объясняется одновременным изменением межмолекулярного взаимодействия и гибкости цепи.[8, С.165]

Однако в отличие от низкомолекулярных веществ в полимерах наблюдается не температура плавления, а скорее температурный интервал плавления, положение которого может изменяться в зависимости от -молекулярной массы полимера и размеров микрокристаллитов, поверхностной энергии и концентрации дефектов в микрокристаллитах и других характеристик надмолекулярной структуры образца. Кроме того, на температуру плавления полимеров значительное влияние оказывают условия эксперимента (например, скорость нагревания и т. п.), что послужило причиной того, что раньше измерения температуры плавления проводили при очень низких скоростях нагревания с целью максимального приближения к равновесным значениям температуры плавления. В настоящее время эксперименты, напротив, проводят при достаточно высоких скоростях нагревания с. тем, чтобы свести к минимуму возможные изменения надмолекулярной структуры полимера в процессе измерений (в частности, изменение размеров кристаллитов). Строго говоря, вопрос о надежных значениях равновесных температур плавления для различных полимеров остается еще до конца не выясненным.[8, С.165]

ПЛАВЛЕНИЯ ТЕМПЕРАТУРА полимеров (melting point, Schmelztemperatur, point de fusion). У полимеров различают две П. т.— равновесную (Тп°л) и экспериментальную (Гпл), которую обычно называют просто П. т.[10, С.302]

Как и температура плавления, температура стеклования может считаться конкретной характеристикой индивидуальности данного полимера. Кроме того, температура стеклования имеет важное значение как параметр, определяющий различные физические свойства полимера при данных температуре и давлении. В реологии развитие феноменологических теорий, описывающих поведение полимеров (по крайней мере некристаллизующихся полимеров) в области температур, превышающих температуру стеклования Те, таких, как теория Вильямса — Лендела — Ферри или теории свободного объема, было обусловлено возможностью применения Tg в качестве ' единственного «материального» параметра полимера. Благодаря тому, что выше Tg полимеры на микроуровне структуры являются 'Жидкостями, для них оказались справедливыми различные варианты принципа «соответственных состояний». Последнее обстоятельство является очень важным, поскольку оно дало возможность детально[8, С.165]

Плавления температура 2—607 Плазмозаменители 2—931; 3—739 Плазмозай 1—432 Плайофильм 1—633 Пласкон 1—115, 940 Пласкон CTFE 3—797 Пластазот 2—561 Пластигели 2—543[11, С.561]

ПЛАВЛЕНИЯ ТЕМПЕРАТУРА п о л и м е р о в[9, С.304]

Термические Температура плавления . . Температура перехода второго рода ... . . °С °С 265 80—90° [12, С.37]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
3. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
4. Смирнов О.В. Поликарбонаты, 1975, 288 с.
5. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
6. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
7. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
8. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
12. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
15. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную