На главную

Статья по теме: Полимеризации образуется

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При любом методе полимеризации образуется аморфный, атак-тический полимер с практически универсальными клеящими и связующими свойствами. Содержание звеньев, построенных по типу «голова к голове», составляет 1,5—2,0% ;[1, 12]. Молекулярная масса 'применяемых -на практике полимеров колеблется в пределах 0,1 -105—3,0-105. Поливинилацетат растворяется в спиртах, кето-нах, .ароматических углеводородах, зфирах; особенно он стоек к действию масел, алифатических углеводородов (бензину, керосину) ; набухает в воде.[19, С.195]

На более поздних стадиях полимеризации образуется нерастворимый полимер пространственного строения с межмолекулярными имид-ными связями:[7, С.221]

В зависимости от способа полимеризации образуется полимер разного стереоизомерного состава. Структура полипропилена может быть нескольких типов (изотактическая, синдиотактическая, атактическая и стереоблочная). Различие между указанными структурами молекулярной цепи обусловливается неодинаковым положением метилыюй группы у третичного атома углерода. Изотак-тический и синдиотактический полимеры имеют совершенно регулярно построенные цепи, располагающиеся вдоль винтовой оси (спирали). Структуру называют изотактической, если все метильные группы находятся по одну сторону от воображаемой плоскости главной цепи. Структура с регулярно чередующимся расположением метильных групп по разные стороны главной цепи называется синдиотактической, а структура со стерически нерегулярной последовательностью метильных групп — атактической. Стерео-изомеры различаются между собой по свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, стереоблокполимеры обнаруживают уже некоторую прочность, хотя и они обладают свойствами эластомеров. Изотактический полипропилен — вязкий продукт с высоким модулем упругости. Более подробно эти вопросы рассматриваются в гл. 4.[10, С.50]

Полимеризация производится при температуре 40 °С до достижения определенной глубины полимеризации. При слишком большой глубине полимеризации образуется каучук с пониженными физико-механическими показателями и с пониженной пла--стичностью, затрудняющей его обработку.[8, С.42]

Поверхностное натяжение системы, содержащей только не-ионныи эмульгатор, в процессе полимеризации практически не меняется, и в результате полимеризации образуется адсорбционно-насыщенный латекс. В системах со смесью ионного и неионного эмульгатора поверхностное натяжение по мере протекания полимеризации повышается, так же как и в системах с ионными эмульгаторами. J[1, С.601]

Бутилкаучук получается путем совместной полимеризации изобутилена с небольшим количеством диеновых углеводородов (2—3%), обычно с изопреном. В результате полимеризации образуется бутилкаучук с малым содержанием двойных связей, обусловленных наличием звеньев изопрена, входящих в молекулу каучука. Непредельность бутилкаучука составляет 1—2 мол. %. Вследствие его малой ненасыщенности он обладает рядом ценных технических свойств: стойкостью к кислороду, озону и другим химическим реагентам. Вместе с этим низкая ненасыщенность бутилкаучука является причиной его медленной вулканизации.[8, С.43]

Несмотря на большое разнообразие комплексных металлор)-ганических соединений, применяемых в реакциях полимериза ции, их можно объединить следующим образом Истинный ка татизатор полимеризации образуется в резучьтате взаимодей ствия двух соединений металлов Одним из этих соединений яв ляется производное переходных металлов IV—V групп дру гим — металлорганических соединений металлов I—III групп периодической системы По мнению Натта {113] наиботее эффек тивньши в реакции полимеризации переходных металлов явтя ются соединения элементов относитечьно четко отдающих элек троны т е обтадающих низким потенциалом ионизации (мень ше 7 в) и работой выхода электрона (меньше 4,2 эв) Такими элементами, в частности яв тяготея титан (работа выхода пер вого электрона 414 эв, потепциат ионизации 6 83в) ванадии (соответственно 3 7 эв и 674в), а также цирконий, хром и др[16, С.17]

Эти олигоэфиры служат исходным сырьем для получения трехмерных блок-сополимеров, причем поперечные связи образуются путем присоединения этиленовых углеводородов по месту двойной связи полиэфира. Например, при взаимодействии непредельного олигоэфира со стиролом в присутствии инициатора полимеризации образуется пространственно-структурированный блок-сополимер, строение которого можно представить следующей схемой:[7, С.353]

Наибольшая дефектность сетчатой структуры наблюдается в точке гелеобразованин. При этом образуется несовершенная сетчатая структура с большим числом свободных концов. Структура таких сеток, называемых микрогелем, зависит, в частности, от типа и способа получения полимера. Так, при получении статистического сополимера бутадиена и стирола методом эмульсионной полимеризации образуется рыхлый мнкрогель, т. с. с невысокой плотностью сшивания, а микрогель полинзо-прена, полученного полимеризацией в растворе, характеризуется наличием плотного ядра, из которого выходят длинные концы цепей. По мере увеличения плотности сшивания дефектность ^стки снижается и приближается к единице при м — »-[11, С.37]

Реакция полимеризации протекает по типу радикальных процессов, инициатором ее служат перекиси, в том числе персульфаты. Введение в реакционную смесь некоторого количества ионов серебра в сочетании с персульфатом заметно улучшает свойства полимера—повышается его твердость и термическая стойкость. Полимеризацию проводят как в органических растворителях (спирт, бензол), так и в водной эмульсии при 45—'65°. В результате полимеризации образуется тонкий порошок.[4, С.260]

Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений: при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер; если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 15.1).[6, С.231]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
4. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
8. Белозеров Н.В. Технология резины, 1967, 660 с.
9. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
10. Амброж И.N. Полипропилен, 1967, 317 с.
11. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
14. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
15. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
16. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
19. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
20. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
21. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
22. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
23. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
24. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
25. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
26. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
27. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
28. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
29. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
30. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
31. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
32. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
33. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную