На главную

Статья по теме: Строением макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полимеры со стереорегулярным строением макромолекул, не способные кристаллизоваться при заданной температуре или кристаллизующиеся чрезвычайно медленно, при той же температуре легко кристаллизуются, будучи растянутыми. Это объясняется тем, что при растяжении происходит ориентация макромолекул и, следовательно, упорядочение в расположении сегментов. Упорядочение под действием растяжения облегчает возникновение дальнего порядка в результате кристаллизации.[6, С.181]

Для полимеров с более сложным строением макромолекул •теплоемкость представляет собой сочетание теплоемкости акустического спектра скелета и крутильных колебаний (и качаний) боковых радикалов, поэтому при повышении температуры она существенно увеличивается. При температуре ниже Гс полимеров перегруппировка их макромолекул практически полностью затор-•можена и поглощаемая извне теплота тратится только на увеличение энергии колебаний отдельных атомов макромолекул. При -постепенном нагревании полимеров происходит все большее увеличение гибкости их цепей. Поглощаемая полимером при его нагревании теплота расходуется на увеличение энергии колебаний[4, С.269]

Выше было установлено, что специфической особенностью разрыва полимеров, обусловленной цепным строением макромолекул, является возникновение в области распространения разрыва дополнительной (по сравнению с материалом в других частях образца) ориентации. Однако эта особенность проявляется только при таких условиях деформации, когда достаточно полно реализуется способность макромолекул к изменению формы [299, с. 91 ]. Как показала скоростная киносъемка процесса разрыва в поляризованном свете, полимеры в стеклообразном состо-[14, С.117]

Поведение полисахаридов древесины при ее делигнификации будет определяться условиями проведения процесса, строением макромолекул и особенностями надмолекулярной структуры полисахаридов, влияющими на их доступность действию химических реагентов. По доступности к варочным реагентам все полисахариды можно разделить на три группы: полисахариды, переходящие в варочный раствор; полисахариды, в структуру которых проникают реагенты; полисахариды, структура которых недоступна для реагентов. Полисахариды первой группы растворяются, второй - набухают в варочном растворе, третьей - не набухают. Полисахариды первых двух групп доступны действию реагентов, при этом реакции полисахаридов первой группы протекают гомогенно, а второй - гетерогенно. В третьей группе с химическими реагентами могут взаимодействовать только макромолекулы, находящиеся на поверхности надмолекулярных структур. Первую группу образуют водорастворимые полисахариды (арабино-галактаны, пектиновые вещества, крахмал и др.). В щелочных растворах с увеличением концентрации щелочи эта группа расширяется за счет части гемицеллюлоз. Ко второй группе относятся основная масса гемицеллюлоз и аморфные участки целлюлозы. В третью группу входят кристаллические участки целлюлозы и целлюлозаны. В ходе варки может изменяться растворимость полисахаридов, например, вследствие изменения их молеку-[11, С.341]

Полимеры с разветвленным строением макромолекул или с затрудненной подвижностью линейных макроцепей образуют аморфно-кристаллическую структуру. Например, полиэтилен низкой плотности, в главных цепях которого присутствуют многочисленные ответвления, может содержать до 70 % аморфной фазы.[15, С.13]

Природа и структура М., образующихся в полимерах при действии ионизирующих излучений, определяются химич. строением макромолекул, изотопным составом полимера, темп-рой, дозой излучения и др. При низкотемпературном радиолизе в большинстве полимеров возникают преимущественно алкильные М. со свободной валентностью, локализованной на атоме углерода в середине полимерной цепи, напр. М. строения ~ CHjCHCH,, ~ в полиэтилене. В этих условиях образуются также аллильные М., ион-радикалы и радикальные пары.[17, С.67]

Природа и структура М., образующихся в полимерах при действии ионизирующих излучений, определяются химич. строением макромолекул, изотопным составом полимера, темп-рой, дозой излучения и др. При низкотемпературном радиолизе в большинстве полимеров возникают преимущественно алкильные М. со свободной валентностью, локализованной на атоме углерода в середине полимерной цепи, напр. М. строения ~ СН2СНСН, ~ в полиэтилене. В этих условиях образуются также аллильные М., ион-радикалы и радикальные пары.[20, С.65]

Растворимость полимеров, как и другие их физические свойства, определяется молекулярной массой, геометрической формой и химическим строением макромолекул. Сравнительно легко растворяются в растворителях полимеры с линейной или разветвленной формой микромолекул. Наличие в макромолекулах такого полимера различных функциональных групп может либо облегчить, либо затруднить подбор растворителя. Кристаллические полимеры обычно растворяются только при температуре, близкой к их температуре плавления. Например, полиэтилен растворяется во многих растворителях только при нагревании (120°С). Если между полимером и растворителем происходит специфическое взаимодействие (например, возникают водородные связи), то раствор может быть получен и при более низкой температуре. Так, полиамид на основе адипиновой кислоты и гексаметилендиамина растворяется в холодной муравьиной кислоте [20].[12, С.127]

Весь комплекс физических и химических свойств волок-нообразующих полимеров в существенной степени определяется размерами и химическим строением макромолекул, а также особенностями их агрегации - надмолекулярной структурой.[2, С.16]

Статистические бутадиен-стирольные каучуки растворной полимеризации (ДССК) имеют повышенное содержание цис-1,4-звеньев, они характеризуются также более линейным строением макромолекул и более узким ММР. В табл. 3 приведены сравни-, тельные данные по молекулярной структуре эмульсионных и растворных статистических бутадиен-стирольных каучуков промышленных марок*.[1, С.57]

Уретановые термоэластопласты, производство которых интенсивно развивается в течение последних 5—7 лет, являются одним из наиболее перспективных типов уретановых эластомеров. Обладая линейным или слабосшитым строением макромолекул, эти материалы способны перерабатываться высокоскоростными методами обработки пластмасс — экструзией и литьем под давлением, кроме того, возможна повторная переработка отходов.[19, С.31]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
10. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
11. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
12. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
13. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
14. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
15. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
16. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
20. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
21. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную