На главную

Статья по теме: Зависимости напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Общий вывод из рассмотренных выше работ [49—52] заключается в том, что наклоны кривых зависимости напряжения от деформации и концентрации радикалов от деформации качественно соответствуют друг другу. Для количественного соответствия следовало бы предположить, что число разрывов цепей в 20—40 раз больше, чем регистрируется свободных радикалов. По-видимому, подобное предположение слишком сильное, если учесть, что не происходит соответствующего значительного уменьшения молекулярной массы и что не обязательно снижается работоспособность волокнистого материала за пределами непосредственной зоны разрушения. Преворсек [53] показал, что прочность сегментов волокна при неоднократном воздействии растягивающей нагрузки действительно не уменьшалась. Разрыв сегментов, происходящий при первом цикле нагружения, сопровождается увеличением прочности материала по сравнению с прочностью исходного волокна, и такая прочность сохраняется при последующем нагружении (рис. 8.14). Поэтому кажется более вероятным, что число разрывов цепей по порядку величины соответствует данным исследований методом ЭПР, т. е. составляет 1016—5-Ю17 см~3. Сама по себе подобная концентрация разрывов не является решающей для ослабления полимерной системы, поскольку при разрушении она составляет лишь 0,002—0,1 % от всех аморфных[1, С.249]

В случае же частично кристаллических полимеров, которые имеют «пластическую и хрупкую ветвь» кривой зависимости напряжения от долговечности, действуют два различных механизма, из которых, начало роста трещины при ползучести обладает, по-видимому, меньшей энергией активации (181 кДж/моль) и активационным объемом (1,8 нм)3. Тот факт, что в ПЭ редко наблюдаются разрывы цепей даже при высоких напряжениях и низких температурах в высокоориентированных образцах, заставляет усомниться в том, что механизм начала роста трещины при ползучести включает разрыв цепей.[1, С.286]

Механическая прочность фибрилл в направлении приложенного напряжения была определена для поликарбоната [83] и полистирола [120]. На рис. 9.12 представлен график зависимости напряжения от деформации для ПК, содержащего трещину серебра [83]. Следует отметить, что материал с трещиной серебра может выдержать напряжения растяжения, лишь немного меньшие предела вынужденной эластичности OF сплошного материала. Однако в случае образцов, содержащих трещину серебра, деформации намного больше (40—140%) по сравнению с деформацией вынужденной эластичности сплош-[1, С.366]

Применение механики разрушения к вязкоупругой среде ограничивается отклонением от условия бесконечно малой деформации вследствие молекулярной анизотропии, локальной концентрации деформаций и зависимости напряжения и деформации от времени. Эта теория эффективна при исследовании распространения трещин. Аналитическое обобщение работы Гриффитса на линейные вязкоупругие материалы было предложено Уильямсом [36] и несколько раньше Кнауссом [37]. В гл. 9 будет дан более подробный расчет распространения трещины с позиций механики разрушения. Будут рассмотрены морфологические аспекты разрушения и влияние пластического деформирования, зависящего от времени, возникновения и роста трещины серебра и разрыва цепи на энергию когезионного разрушения полимеров.[1, С.72]

В данной работе не будет рассматриваться экспериментальное оборудование, и читатель может обратиться к упомянутым обзорным статьям или относящимся к данному вопросу научным работам (например, [132 — 138]). На практике применяется пять различных типов зависимости напряжения от деформации, которые классифицируются Эндрюсом [126], а также Мэнсо-ном и др. [127] следующим образом:[1, С.291]

Для труб из ПВХ с учетом рис. 1.4 с помощью выражения (8.21) получены следующие значения: ?/0 = 397 кДж/моль, Y = 1740-10~6 м3/моль и /0=1,7-10-52 с (чисто формальное значение). Следует отметить, что данная группа параметров описывает долговечность ПВХ, несмотря на то что эти данные соответствуют трем различным видам разрушения. Кривые зависимости напряжения от времени неориентированных частично кристаллических полимеров (ПЭ, ПП) при больших значениях tb имеют участки падения прочности (хорошо известный наклон (рис. 1.5)). Плоские участки кривых (связанные преимущественно с пластическим ослаблением) могут быть представлены значениями U0 = 307 кДж/моль, у = 4390 X X Ю~в м3/моль и z'o = 3-10~40 с, а крутые участки (ослабление путем образования трещины при ползучести) — значениями ?/о=181 кДж/моль, у = 3610-10~6 м3/моль и А> = 8-10-20с. Для ориентированных частично-кристаллических полимеров Журков и др. [18] сообщают следующие значения параметров:[1, С.284]

Феллерс и Ки [146] исследов,али зависимость образования трещин серебра и напряжений разрыва материала от молекулярной массы. Эти авторы предполагают, что напряжения начала роста_трещины серебра не зависят от молекулярной массы, если Мп>2Ме, в то время как развитие такой трещины и ее разрыв явно зависят от нее. Это становится очевидно из графика зависимости напряжения от молекулярной массы (рис. 9.13). Поскольку молекулярная масса не влияет на измеренный модуль упругости (1,5 ГПа), деформации начала роста трещин серебра также будут постоянными (2 %). На основании этих результатов можно прийти к выводу, что начало роста трещин серебра зависит главным образом от взаимодействия между цепными сегментами. В отличие от кажущейся независимости напряжения и деформации начала роста трещины серебра от молекулярной массы Тс различных фракций ПС монотонно возрастает от 88 при Мп = 70 000 до 105°С при Мп = 150000. Иной результат, полученный этими же и другими авторами, состоит в том, что многочисленные трещины серебра в образцах с высокой молекулярной массой очень тонкие длинные и прямые по сравнению с трещинами серебра в полимерах с низкой молекулярной массой, которые грубее по текстуре и несколько короче. По-видимому, данное явление связано с однородностью поля напряжений, которая тем выше, чем более многочисленны и более прочны фибриллы. На основе этих исследований и обширных исследований Дёлля и др. [15, 30,[1, С.375]

Рис. 6.8. Схема зависимости напряжения от времени при синусоидальной деформации:[2, С.153]

С общих позиций термодинамики проанализируем вид зависимости напряжения от деформации полимеров. Это необходимо сделать потому, что полимеры способны к большим обратимым деформациям, что отличает их от многих других хорошо изученных тел. Описание вида зависимости напряжения от деформации на основе законов термодинамики поможет глубже понять природу больших обратимых деформаций в полимерах.[4, С.105]

Наиболее общим результатом является представление зависимости напряжения от деформации в дважды нормированном виде — по температуре и концентрации наполнителя. Однако не все параметры удается представить в концентрационно-инвариантной форме, используя один и тот же метод приведения по концентрации наполнителя. В частности, более сильным, чем предсказывается общим методом приведения, оказывается влияние наполнителя на начальном участке кривой зависимости напряжения от степени растяжения. Величина относительной деформации при разрыве также может быть представлена в концентрационно-инвариантной форме, если использовать не только обычный, горизонтальный, но и вертикальный сдвиг экспериментальных кривых.[13, С.144]

В качестве характеристики когезионной прочности может быть выбрана одна из величин, определяемых по графической зависимости напряжения от деформации: предельная эластичность, условное напряжение при определенном удлинении, условная прочность при растяжении, относительное удлинение, энергия, затраченная на растяжение (площадь под кривой растяжения) и др. На кривой напряжение - деформация можно выделить точки, соответствующие развитию необратимых деформаций течения/, и разрыва^. В качестве критерия когезионной прочности чаще всего используют [26] параметр/, или разность/, -/. Если эта разность меньше нуля, то отмечают, что когезионная прочность резиновой смеси практически равна нулю.[8, С.343]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
10. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
11. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
12. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
13. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
14. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
15. Северс Э.Т. Реология полимеров, 1966, 199 с.
16. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
17. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
18. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
19. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
20. Виноградов Г.В. Реология полимеров, 1977, 440 с.
21. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
22. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
23. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
24. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
25. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
26. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
29. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
30. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
31. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
32. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
33. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную