На главную

Статья по теме: Концентрации наполнителя

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Предельные концентрации наполнителя в конкретных композиционных материалах определяются свойствами наполнителя и степенью взаимодействия его с матрицей жесткого ПВХ. Поэтому направленное изменение взаимодействия наполнителя с полимерной матрицей позволяет создавать композиционные материалы с определенным комплексом технологических и эксплуатационных свойств. Из множества известных способов изменения взаимодействия матрицы полимера с поверхностью наполнителя наиболее широко применяется модификация поверхности наполнителя за счет использования аппе-ротирующих добавок [25, 159], механохимической активизации наполнителей [26], нанесения полимерных покрытий, химически привитых к поверхности наполнителя [24]. Последний способ получил развитие в нашей стране как метод полимеризационного наполнения термопластов (норпласты) [25, 30, 71]. В норпластах при одинаковой природе полимера и полимерного покрытия на поверхности наполнителя достигается высокая адгезия матрицы полимера к наполнителю. В результате этого, как показано в [17, 20, 27, 31, 41], происходит улучшение технологических и некоторых физико-механических свойств. В частности, при наполнении изменяются реологические свойства расплавов полимеров, от которых в значительной мере зависит выбор способа переработки [42, 43]. Кривые течения наполненных композиций на основе жесткого ПВХ имеют характерный вид, когда течение ограничено снизу пределом текучести ттек, сверху - критическим напряжением ткр, при котором происходит срыв потока (рис. 7.8). Предел текучести и концентрация наполнителя, при которой он проявляется, зависят от взаимодействия наполнителя с матрицей жесткого ПВХ. Вероятно, с увеличением концентрации наполнителя или активации его поверхности ттек увеличивается, что выдвигает особые требования к технологии переработки. В частности, необходимо повышение температуры переработки, которое, однако, приводит к снижению допустимого времени пребывания наполненной композиции при[6, С.194]

ИК-спектроскопический анализ при получении полимерных компаундов позволяет проводить измерения непосредственно в ходе технологического процесса. Например, фирмой "Automet. Corp." в 1991 году был предложен новый спектрометр для анализа потоков полимерного расплава, влияния концентрации наполнителя и соотношения гомополимеров в составе сополимера на его свойства.[4, С.236]

Показатель п в этом уравнении, называемый индексом течения, характеризует степень отклонения течения от ньютоновского. Это достаточно важная физическая характеристика материала, часто используемая при расчетах процессов переработки полимеров. Для эластомеров п составляет несколько десятых и зависит от молекулярной массы, разветвленности цепей, а также от концентрации наполнителя и температуры.[1, С.52]

При механическом диспергировании наполнителей чаще всего наблюдается статистическое распределение их в полимере. При этом зависимость уде |ьною сопротивления материала от содержания наполнителя ф„ описывается сложной кривой, имеющей три участк • первый характеризуется постоянным значением сопротивления, которое определяется свойствами полимерной среды, на втором происходит заметное снижение сопро тивления с ростом количества наполнителя, третий характеризуется очень слабой зависимостью ру от ср„. Первый перегиб соответствует концентрации наполнителя, при которой начинает образовываться его непрерывная цепная структура, второй — моменту, когда формирование этой структуры завершено Зависимость ру = Н<Рн) на втором участке может быть выражена со отношением[3, С.387]

В заключение отметим, что введение в полимер мелкодисперсного инертного наполнителя приводит в основном к вертикальному сдвигу кривых податливости без нарушения их подобия. На рис. 2.15, а приведены обобщенные (по температуре) кривые податливости непластифицированных композиций ПВХ, наполненного мелкодисперсным мелом. Видно, что по мере снижения процентного содержания наполнителя Кв (%) закономерно растет податливость, пропорционально некоторой величине Вк, зависящей от Кп (%). Аналогичный характер изменения вязкоуп-ругой податливости в высокоэластическом состоянии материала обнаружен и при параллельном введении пластификатора ДБФ. Таким образом, обобщенные кривые податливости полимеров, наполненных инертным мелкодисперсным наполнителем, в определенных пределах концентрации наполнителя и пластификатора можно аппроксимировать соотношением[2, С.78]

Межфазное распределение наполнителя можно исследовать различными методами (газовой хроматографией, методом механических потерь), но наиболее распространена электронная микроскопия. Методы оценки степени диспергирования основаны на том, что из отобранных по закону случайных чисел образцов изготавливают тонкие пленки или микротомные срезы, которые затем просматриваются в световом или электронном микроскопе. Прямой метод с использованием оптического микроскопа наиболее распространен, однако он отличается большой трудоемкостью и низкой производительностью, что затрудняет его применение для оперативного контроля в заводских условиях. Другими недостатками являются: наличие субъективного фактора, значительное влияние гомогенности смеси на получаемый результат ввиду малости анализируемой пробы, колебания концентрации наполнителя в смеси и др.[4, С.472]

Влияние концентрации наполнителя на равновесные механические свойства саженаполненных вулканизатов натурального каучука |29|[7, С.137]

Из числа известных фактов влияния концентрации наполнителя следует упомянуть, что с увеличением концентрации усиливающего наполнителя прочность резин проходит через^ максимум, положение которого зависит от температуры [48]. По мере повышения температуры положение максимума сдвигается в сторону больших дозировок наполнителя [72], что, по-видимому, объясняется уменьшением числа связей каучук-наполнитель с температурой.[7, С.145]

Существенно было исследовать также влияние концентрации наполнителя на среднее время релаксации полимерной матрицы в наполненном материале. Для этой цели была построена обобщенная зависимость тангенса угла механических потерь от частоты (рис. III. 38). С ростом концентрации наполнителя максимум механических потерь сдвигается в сторону более низких частот; так как время релаксации т = 1/сот (где сот — частота, отвечающая максимуму потерь), то можно вычислить зависимость 1§т = /(Ф) (рис. III. 39). Эта зависимость близка к линейной, что указывает на экспоненциальную зависимость времен релаксации от концентрации наполнителя. Это позволяет прийти к заключению о существовании в наполненных полимерах суперпозиции концентрация наполнителя — время. Действительно, характерная форма и положение кривых lgG' = /(lgco) при разных Ф (рис. Ш. 40) позволяют считать, что к этим системам применим метод ВЛФ._ Сделав приведение к наинизшей концентрации наполнителя и вводя кон-[8, С.145]

Сопоставление плотностей ряда наполненных и ненаполненных полимеров, найденных экспериментально, с величинами, вычисленными при допущении аддитивности плотностей полимеров и наполнителей, показало, что экспериментальные значения плотностей, как правило, меньше значений, вычисленных по аддитивности, что указывает на меньшую плотность упаковки полимерных молекул в наполненных полимерах. Однако изменения плотности упаковки наполнения могут иметь более сложный характер. Так, в работе [59] для системы сополимер винилхлорида с винилацетатом —TiCb по данным скоростей сорбции и десорбции паров были определены коэффициенты диффузии. Полученные результаты показали, что при повышении содержания наполнителя коэффициент диффузии проходит .через максимум. Это объясняется нарушением ' взаимодействия между цепями вследствие их адсорбции на поверхности ТЮ2 и увеличением по достижении определенной концентрации наполнителя числа «дырок». Сорбция органических паров поливинил-ацетатом и эпоксидной смолой может даже снижаться в результате уменьшения числа возможных конформаций цепей на границе раздела [60].[8, С.19]

Разрывные удлинения наполненных резин снижаются с возрастанием концентрации наполнителя [72], так как при этом уменьшается доля эластически активного материала.[7, С.145]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
6. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
7. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
10. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
14. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную