На главную

Статья по теме: Фибриллярную структуру

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Характерную фибриллярную структуру имеют растянутые образцы ПЭВД. Существуют различные способы вытяжки, в частности, вытяжка на холоду, вытяжка при повышенной температуре (выше температуры плавления), например методом экструзии с последующим раздувом, которая применяется при промышленном получении пленок из полиэтилена. Исследование структуры таких растянутых пленок, а также волокон методами двойного лучепреломления и рентгеновской дифракции позволило получить ряд важных результатов и сопоставить их с механическими свойствами. Результаты этих исследований показали, что в образцах, растянутых на холоду, как в пленках, так и в волокнах, ось с и, следовательно, оси макромолекул ориентированы преимущественно вдоль направления вытяжки. Оси Ь и а ориентированы равномерно в перпендикулярной плоскости.[4, С.146]

В паракристаллической теории') считается, что цепные молекулы образуют трехмерные решетки и что устанавливается определенный дальний порядок в пределах одной и той же решетки. В то же время утверждается, что в реальном твердом теле решетка будет искаженной. Степень искажения решетки оценивается разбросом величины трех пространственных векторов а,- между соответствующими точками решетки, движущимися в трех ее направлениях. Если все безразмерные относительные средние флуктуации gik пространственных векторов а,-равны нулю, то структура кристаллическая, а если все gik больше 0,1, то структура аморфная. Величина gik служит количественной мерой коллоидности структуры микронеоднородных твердых тел. Если, например, g\s и gw велики по сравнению с остальными gik, то реализуется нематическое состояние (сегменты параллельны, а периодичность случайная), если gsi и gsz велики по сравнению с остальными go,, то реализуется смектическое состояние (сегменты упорядочены в слои) [9]. Известно, что относительная паракристаллическая пространственная флуктуация обратно пропорциональна максимальному числу планарных связей в одной микрообласти [9]. Флуктуации gm. получены путем измерения формы линии при малоугловом рассеянии рентгеновских лучей. Схематическое представление двумерной паракристаллической решетки по Хоземанну дано на рис. 2.17. Если объяснить надмолекулярную организацию (например, фибриллярную структуру, показанную на рис. 2.11) с помощью паракристаллов в отличие от обычных кристаллов, то будет получено то же самое распределение[1, С.50]

Выпрямленные цепи агрегируются в пачки, содержащие гго несколько десятков цепей, образуя так называемую фибриллярную структуру^ или фибриллы (рис. 43) (см. стр. V).[2, С.121]

При нагревании до 100—110°С гидрохлорированный цис-поли-изопрен аморфизуется. Если при этих температурах полимер подвергнуть одноосному или двуосному растяжению, то кристаллическая сферолитная структура переходит в аморфную фибриллярную структуру, которая может быть зафиксирована путем быстрого охлаждения образца [84]. Ориентация пленки при повышенной температуре с последующим быстрым охлаждением («закалка») увеличивает прочность материала, прозрачность и блеск, уменьшает паро- и газопроницаемость, улучшает морозостойкость и т. д. Одновременно при двуосной ориентации более чем в два раза увеличивается размер пленки. После прогрева фибриллярная структура разрушается и пленка сокращается.[7, С.222]

Для ориентированных кристаллических и аморфных полнме ров характерно явление анизотропии теплопроводности проявляющееся в том что теплопроводность в направлении ориентации (К ) выше, чем в направлении, перпендикулярном ориентации (X ). Физической причиной появления анизотропии теплопроводности аморфных полимеров является переход из конформации статистического клубка в конформацню вытянутой струны (фибриллярную структуру), что приводит к у ве т имению доли ковалентных связей расположенных вдоль оси ориентации, и повышению провод (мости энергии за счет межчолеку тарных связен, так как ориентация приводит к росту их числа вдоль направления действия силы:[5, С.361]

В электронном микроскопе вместо светового излучения используется пучок ускоренных электронов. Изображение изучаемого объекта наблюдается на флуоресцентном экране или фиксируется фотографическим способом. Увеличение в электронном микроскопе примерно на два порядка выше, чем у оптических микроскопов, и достигает 103...105. Разрешающая способность в зависимости от техники исследования может составлять от 6...10 им до 0,2. ..0,5 нм. Это позволяет изучать разнообразные надмолекулярные образования у синтетических полимеров, фибриллярную структуру цел-люлозосодержаших клеточных стенок древесины и других растительных тканей, ультраструктуру волокнистых полуфабрикатов целлюлозно-бумажного производства.[6, С.144]

При дальнейшем повышении температуры до 270...280°С и выше начинает разрушаться и кристаллическая часть, причем температура начала декристаллизации зависит от структуры кристаллической решетки, т.е. от полиморфной модификации целлюлозы. При температуре около 340°С происходит полная аморфизация со значительной потерей массы (до 60%). Затем начинается переход аморфизированной структуры целлюлозы в карбонизованную (формирование структуры угля). В результате экзотермических реакций выделяется теплота и образуются газообразные и жидкие продукты распада. К 400...450°С выделение жидких продуктов заканчивается и образуется целлюлозный уголь, сохраняющий фибриллярную структуру. При более высоких температурах фибриллярная структура может перестраиваться в графитоподобную.[6, С.356]

Выпрямленные цепи агрегируются в пачки, содержащие по несколько десятков цепей, образуя так называемую фибриллярную структуру, или фибриллы (рис. 43) (см. стр. V).[8, С.121]

Жгутиковые — одноклеточные, и их хромосомы видны в течение всего биологического цикла. Они обнаруживают фибриллярную структуру, представляющуюся промежуточной между структурами бактериальных ядер и хромосом эукариотов — высших организмов [85]. Хромосомы жгутиковых состоят из нитей ДНК, которые отчетливо видны в тонких срезах. Гистоны, или основные белки, обычно ассоциированные с ДНК в клеточных ядрах и хромосомах высших организмов, в этом материале, по-видимому, отсутствуют [86—88]. Ультратонкие срезы этих хромосом выявляют наличие пачек параллельных арок, связанных с холестерической организацией [70, 89]. В продольном сечении полосы волокон, рассеченных под прямым углом, чередуются с волокнами, лежащими в плоскости сечения. В косых сечениях получаются ряды параллельных арок. В поперечных (или близких к поперечным) сечениях волокна имеют постоянное' направление или образуют большие дуги.[10, С.303]

Итак, в результате процесса деформации фибриллы сферолитов, из которых в большинстве случаев состоят перастянутые образцы, дают новую фибриллярную структуру с периодом, отличным от большого периода нерастянутого образца и совпадающим по направлению с направлением молекулярных цепей. Тот факт, что в процессе деформации средний размер кристаллита в направлении молекулярных цепей практически не меняется, вероятно, указывает на то, что новая фибриллярная структура возникла из фибриллярной структуры неориентированных образцов путем поворота кристаллитов осью с в направлении вытяжки и их деформации путем скольжения одной части кристаллита относительно другой вдоль направления молекулярных цепей. Поскольку в полиэтилене, особенно полученном кристаллизацией из расплава, как мы предполагаем, имеются цепи, проходящие из одного складчатого слоя кристаллита в другой и от кристаллита к кристаллиту, и пока при деформации эти связи сохраняются, деформация носит термообратимый характер в отличие от металлов, пластическая деформация в которых необратима. Обратимость деформации проявляется лишь при нагреве до достаточно высоких температур (всего на 3 — 5° ниже температуры плавления), так как обратимость связана с процессом рекристаллизации.[11, С.350]

Возможность селективного действия растворителей на конформацию отдельных компонентов П. с. позволяет, сознательно реализуя глобулярную или фибриллярную структуру боковых и основной цепей П. с., регулировать свойства продукта. Так, используя различные осадители и растворители, из П. с. 1,4-^мс-полиизопрена (натуральный каучук) и метилметакри-лата можно получать либо жесткий пластик (цепи поли-изонрена свернуты, а боковые ветви полиметилметакри-лата вытянуты), либо эластомер (развернуты цепи полиизопрена и глобулизованы ветви нолиметилме-такрилата) (табл. 1).[14, С.102]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Серков А.Т. Вискозные волокна, 1980, 295 с.
10. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
13. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную