На главную

Статья по теме: Насыщенных соединений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Возможна также полимеризация насыщенных соединений циклического строения, содержащих в цикле гетероатом. В этих случаях при полимеризации происходит размыкание цикла и образование гетеро-цепного линейного полимера.[1, С.62]

Исследование многих карбоцепных насыщенных соединений при нагревании в глубоком вакууме позволило выяснить влияние ряда факторов на термостойкость. Было установлено, что на прочность, связи С—С влияет степень разветвленное™ полимеров и наличие заместителей в макромолекуле. У разветвленных полимеров связи С—С между боковыми цепями и главной цепью менее прочны, чем связи С—С в главной цепи. Поэтому разветвленные полимеры всегда менее термостойки, чем неразветвленныс, Изотак-тические полимеры более термостойки, чем атактические.[2, С.59]

Исследование многих карбоцепных насыщенных соединений при нагревании в глубоком вакууме позволило выяснить влияние ряда факторов на термостойкость. Было установлено, что на прочность связи С — С влияет степень разветвленное™ полимеров и наличие заместителей в макромолекуле. У разветвленных полимеров связи С — С между боковыми цепями и главной цепью менее прочны, чем связи С — С в главтюй цепи. Поэтому разветвленные полимеры всегда менее термостойки, чем неразветвленныс, Изотак-тические полимеры более термостоики, чем атактические.[3, С.59]

Более низкая реакционная способность насыщенных соединений по сравнению с реакционной способностью олефинов приводит к тому, что при окислении насыщенных полимеров наблюдаются значительно меньшие физические изменения, чем при окислении ненасыщенных полимеров. Ухудшение физических свойств насыщенных полимеров обычно ограничивается изменением окраски, появлением более или менее глубоких поверхностных трещин или ухудшением диэлектрических свойств, в то время как пол иол е-фины в ряде случаев претерпевают полное механическое разрушение. Вследствие этого исследования окисления насыщенных полимеров проводились в значительно меньших .масштабах.[4, С.176]

В отличие от соединений с двойными связями, у насыщенных соединений даже с разными заместителями у одного атома углерода цис- и транс-изомеров в большинстве случаев не обнаружено. Отсутствие стереоизомеров обусловлено очень быстро происходящим внутренним вращением групп относительно Друг друга. Однако если потенциальные барьеры достаточно аслики, то даже для насыщенных соединений оказывается возможным выделить молекулы с определенной пространственной структурой.[3, С.82]

В отличие от соединений с двойными связями, у насыщен иых соединений даже с разными заместителями у одного атома углерода цис- н грякг-изомеров в большинстве случаев не обнаружено. Отсутствие стереоизомеров обусловлено очень быстро происходящим внутренним вращением групп относительно друг друга. Однако если потенциальные барьеры достаточно велики, то даже для насыщенных соединений оказывается возможным выделить молекулы с определенной пространственной структурой.[2, С.82]

ОКИСЛЕНИЕ НАСЫЩЕННЫХ СОЕДИНЕНИЙ[4, С.176]

Окисление насыщенных соединений[4, С.177]

При окислении ненасыщенных соединений место образования гидро-перекисных групп определяется сильным активирующим влиянием двойной связи на атомы водорода у «-углеродного атома. Аналогичное влияние оказывают также ароматические ядра, как, например, в тетралине [37—411. этилбензоле 1121], изопропилбензоле [122] и /г-цимоле [123]. Атомы водорода у «-углеродного атома значительно более реакционноспособны, чем любые другие атомы водорода, входящие в состав молекулы, поэтому образование гидроперекисей происходит главным образом в этой точке. При окислении насыщенных соединений обычно наблюдается большее разнообразие первичных продуктов реакции, связанное с тем, что атомы водорода, находящиеся в различных положениях, имеют сравнимые реакционные способности.[4, С.178]

Относительно жесткие условия, необходимые для окисления насыщенных соединений, и осложнения, связанные с более энергичным распадом первичных продуктов в сочетании с большим разнообразием этих первичных продуктов, затрудняют кинетическое исследование реакций и их количественное описание с помощью констант скоростей. Однако для большого числа соединений, окисляющихся ниже 250 , реакция в начальной стадии имеет неизменно автокаталитический характер; образующиеся при этом перекиси могут быть определены, причем их количество тем больше, чем ниже температура реакции. Авторы большинства исследований приходят к выводу, что первичной реакцией является образование гидроперекиси точно так же, как это имеет место при окислении олефинов. Образование гидроперекиси можно представить [124—1301 схемой[4, С.178]

Пункт 1 был выведен из данных о влиянии увеличения длины цепи и разветвленное™ молекул насыщенных соединений на скорость окисления. Относительные скорости окисления нормальных парафинов отпентана до декана имеют следующие значения[4, С.180]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
4. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
5. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
6. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
7. Бажант В.N. Силивоны, 1950, 710 с.
8. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
9. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
10. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную