На главную

Статья по теме: Отдельными макромолекулами

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В тех случаях когда пластификатор очень ограниченно или совсем не совмещается с полимером, молекулы пластификатора-размещаются не между отдельными макромолекулами, а между пачками, которые в процессе пластификации не разрушаются: при этом увеличиваются подвижность и гибкость пачек.[5, С.514]

Перепое электрич. зарядов в полимерах, как и в пизкомолекулярных телах, осуществляется ионами, заряженными ассоциатами макромолекул или отдельными макромолекулами в р-ре (молионами), а также свободными и слабо связанными электронами. Суммарная Э. п. определяется концентрацией ге,-, зарядом Si и подвижностью х; всех видов носителей:[9, С.471]

Перенос электрич. зарядов в полимерах, как и в низкомолекулярных телах, осуществляется ионами, заряженными ассоциатами макромолекул или отдельными макромолекулами в р-ре (молионами), а также свободными и слабо связанными электронами. Суммарная Э. п. определяется концентрацией «,-, зарядом gl и подвижностью к; всех видов носителей:[11, С.470]

По мере снижения концентрации полистирола в эфире уменьшается вероятность реакции между макромолекулами. В разбавленных растворгх (1 : 10) реакция между отдельными макромолекулами возможна при 20° только после превращения 64% полистирола в полихлорметилстирол.[1, С.371]

Столь заметные изменения свойств полимера при введении небольших количеств наполнителя невозможно объяснить, если рассматривать взаимодействие между поверхностью наполнителя и отдельными макромолекулами без учета существования в полимерах надмолекулярных образований как самостоятельных структурных единиц. Таким образом, результаты термомеханических наследований, как и другие физико-химические данные, показывают, что во взаимодействии с поверхностью наполнителя принимают участие надмолекулярные структурные образования, некоторые свойства которых могут изменяться под влиянием наполнителя.[6, С.156]

С повышением температуры возрастает скорость отщепления хлористого водорода. При 170° за 4 часа выделяется 5,41% хлора в виде НС1. Одновременно происходит образование поперечных связей между отдельными макромолекулами, что приводит к превращению полимера в нерастворимый материал.[1, С.269]

Химическое строение звеньев макромолекулярных цепей влияет на величину сил межмолекулярного взаимодействия. Полимеры, принадлежащие к группе алифатических углеводородов, не имеют полярных групп, поэтому в них связь между отдельными макромолекулами является только результатом действия дисперсионных сил. Дисперсионные силы межмолекулярного притяжения возникают вследствие поляризации молекул под влиянием непрерывного изменения взаимного положения электронов и ядер в каждом атоме, входящем в состав макромолекулы. Величина дисперсионных сил сравнительно мало зависит от температуры, но резко возрастает с уменьшением расстояния между 'макромолекулами. Силу межмолекулярного взаимодействия характеризуют величиной энергии когезии. Энергией к о-г е з и и называют энергию, которую необходимо затратить для удаления молекулы из твердого или жидкого тела. Величина энергии когезии приблизительно равна теплоте испарения при постоянном объеме. Для полимеров аморфной и неполярной структуры величина молярной энергии когезии, отнесенной к отрезку[1, С.27]

Замещение хлора аминогруппой. При действии аммиака на раствор поливинилхлорида под давлением и при повышенной температуре происходит частичное замещение атомов хлора аминогруппами с одновременным образованием иминных поперечных связей между отдельными макромолекулами:[1, С.270]

Сульфирование полистирола. При действии серной кислоты, олеума или хлорсульфоновой кислоты на предварительно растворенный полистирол образуется преимущественно п-сульфокисло-та полистирола. Одновременно с процессом сульфирования происходит возникновение сульфоновых мостиков между отдельными макромолекулами полимера:[1, С.368]

Наиболее ярко выраженными парамагнитными свойствами обладают полимеры с системой сопряженных связей, причем парамагнитные свойства усиливаются с увеличением молекулярной массы. Парамагнитные свойства полимеров сохраняются при их растворении, что указывает на то, что явление парамагнетизма связано с отдельными макромолекулами, а не с полимером в целом.[2, С.410]

Вискозы, как и растворы других полимеров, начиная с концентрации целлюлозы 0,5—1,0% не подчиняются закону вязкости Штаудингера [см. уравнение (1.5)]. Их вязкость начинает возрастать в степенной зависимости от концентрации полимера согласно уравнению (5.5). Предполагается, что, начиная с этой концентрации между отдельными макромолекулами, свернутыми в клубки, возникает межмолекулярное взаимодействие в виде временно образующихся непрочных связей, контактов или зацеплений. Образуется статистическая структурная сетка. Поскольку связи непрочны и находятся в динамическом равновесии, сетка обладает способностью к пластической деформации, и раствор является вязким. С другой стороны, наличие структурной сетки и большая длина макромолекул приводят к возникновению в растворе упругих деформаций. Таким образом, вискоза обладает свойствами как жидкости, так и твердого тела, что предопределяет ее сложное поведение при переработке.[4, С.117]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Серков А.Т. Вискозные волокна, 1980, 295 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную