С повышением температуры возрастает скорость роста трещин и разрушение происходит при более низких напряжениях. В этом смысле нагрузки, безопасные при низких температурах, становятся опасными при высоких. Поэтому характер разрыва при одном и том же напряжении или скорости деформации с повышением температуры по виду поверхностей разрыва приближается к классическому хрупкому—четко выражены две зоны на поверхности разрушения (рис. 51,6). При этом соблюдается правило, согласно которому с повышением температуры происходит постепенное вытеснение шероховатой зоны зеркальной, как и в случае обычных хрупких материалов.[19, С.93]
Содержание ненасыщенных связей -С=С— с повышением давления убывает, а с повышением температуры возрастает [54, 99], причем в первую очередь за счет винилиденовых групп, которые в ненасыщенных группировках ПЭВД заметно преобладают (рис. 7.14).[10, С.137]
При температуре ниже Тс любой полимер становится твердым, иногда хрупким. По мере понижения температуры возрастает хрупкость полимера, и он легко разрушается под действием ударной нагрузки. Температура перехода высокомолекулярных полимеров в хрупкое состояние мало изменяется при возрастании среднего молекулярною веса данного полимера. Температурой хрупкости часто характеризуют морозостойкость полимера. Значение этой величины меняется в зависимости от примененного метода ее определения. С возрастанием скорости нагружения образца хрупкость полимера проявляется при все более высоких температурах, быстрое охлаждение способствует более длительному сохранению упругости.[2, С.41]
При низкой температуре инициирования первичные радикалы образуются преимущественно по схеме (3). С повышением температуры возрастает количество первичных радикалов, соответствующих схемам (1), (2), (4) и (5). Образующиеся начальные радикалы не одинаково активны в реакции роста полимерной цепи. Наиболее активны начальные радикалы, структура которых соответствует схемам (2) и (4).[2, С.99]
Реакции с аминами**. Полиэпоксиды легко вступают в реакцию присоединения с аминами. При обычной температуре в этой реакции принимает участие преимущественно один водород аминогруппы. С повышением температуры возрастает скорость реакции замещения второго водородного атома аминогрупп:[2, С.412]
Электрической пробой вызывается образованием под действием высокого напряжения электронной лавины. Лавинообразное возрастание носителей тока приводит к пробою диэлектрика. Так как торможение электронов с повышением температуры возрастает, то это приводит к некоторому увеличению электрической прочности с ростом температуры согласно эмиссионной теории, в электрических полях пробой наступает как следствие отрыва связанных электронов при сообщении им энергии поля. Эти электроны становятся способными проводить электрический ток.[6, С.137]
При низких температурах т настолько велико, что даже при небольшой частоте поля диполи не в состоянии отреагировать на его изменение (время переориентации т превышает полупериод переменного поля), поэтому е^е». С повышением температуры возрастает подвижность диполей (т уменьшается) и ориентационная составляющая поляризации начинает возрастать. При сот~1 кривая e,=f(T) проходит через спад и на ней имеется перегиб. Следовательно, полимерная система дает «упругий» или «неупру-гнй» отклик на приложение электрического поля. При определенных температурах, когда выполняются условия cot-Cl, е=«Ст, а[4, С.176]
Если при полимеризации и системе присутствует кислород, то с повышением температуры он во все большей степени взаимодействует с макрорадикалами с образованием различныхпродуктов окисления. Например, при полимеризации бутадиена в присутствии кислорода воздуха с повышением температуры возрастает скорость присоединения кислорода к макромолекулам по месту оставшихся в них двойных связей. Этот процесс сопровождается соединением макромолекул между собой перекисными группами. Одновременно освобождаются валентные связи, которые могут служить источником возникновения боковых ответвлений:[2, С.130]
Полимеризация при повышенных температурах сопровождается многочисленными побочными реакциями между функциональными группами мономера и полимера. С повышением температуры учащаются случаи нерегулярного сочетания отдельных звеньев макромолекул. Такая нерегулярность вызывается двумя причинами. Во-первых, с повышением температуры возрастает вероятность присоединения молекул к свободному радикалу по гхеме «хвост к хвосту» или «голова к голове», и в растущей макромолекуле появляются участки, в которых сочетание звеньев отличается от преимущественного порядка их взаимного расположения. Во-вторых, повышение температуры реакции может вызвать частичную деструкцию растущей макромолекулы или вторичные реакции между функциональными группами. Если заместителями являются функциональные группы ОН, СООН, NH2, присоединение звеньев по схеме «голова к голове» может привести к последующим реакциям, изменяющим химическую структуру полимера:[2, С.129]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.