На главную

Статья по теме: Полимеризации полимеризация

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Начало исследований по синтезу цыс-1,4-полиизопрена в СССР относится к 1938—1940 гг. В это время Ставицкий и Ракитянский (ВНИИСК.) опубликовали результаты своих работ по полимеризации изопрена в присутствии лития, натрия и их органических соединений. Полученные полимеры характеризовались более высокой эластичностью и прочностью по сравнению с полибутадиеном, хотя свойства НК воспроизвести не удалось. Во время Великой отечественной войны исследования были прекращены и возобновлены в 1948 г. Коротковым. Следует подчеркнуть, что в этот период значительное развитие получили методы свободнорадикальной полимеризации. Полимеризация диеновых углеводородов в присутствии металлорганических соединений за рубежом рассматривалась как малоперспективное направление.[1, С.200]

Полимеризация в массе (или в блоке) мономера проводится в присутствии органических пероксидов в качестве инициаторов свободнорадикальной полимеризации. Мономер находится в каком-либо сосуде и по окончании процесса полученный полимер имеет форму этого сосуда. В процессе полимеризации постепенно нарастает вязкость системы вследствие увеличения количества образующегося полимера, из-за чего затрудняются перемешивание и отвод теплоты, выделяющейся при полимеризации. Вследствие большой вероятности обрыва цепной реакции полимер характеризуется сравнительно низкой молекулярной массой и широким мо-лекулярно-массовым распределением. Таким способом получают, например, полистирол и полиметилметакрилат, в частности прозрачные материалы из них (органическое стекло).[3, С.81]

Полимеризация в твердой фазе протекает при температурах ниже температуры плавления мономера. Этот метод не нашел широкого распространения, так как затруднено инициирование полимеризации (низкие температуры, трудности равномерного распределения инициаторов, аппаратурное оформление и др.)-Наиболее удобными являются способы инициирования твердофазной полимеризации светом, излучениями высоких энергий, причем могут реализоваться свободнорадикальный, ионный или смешанный (ионно-радикальный) механизмы полимеризации.[3, С.81]

Полимеризация в растворе мономеров в различных растворителях получила широкое распространение при синтезе полимеров по ионному механизму. Каталитические системы могут быть растворимы в растворителе или присутствовать в виде суспензии, что существенно влияет на структуру получающегося полимера. Растворитель не должен химически взаимодействовать с катализаторами. Если получаемый полимер нерастворим в растворителе, то он выпадает в осадок и его выделение в этом случае значительно упрощается. Если же полимер растворим в растворителе, то раствор полимера может быть использован непосредственно для нанесения, например, полимерных покрытий на различные подложки с удалением растворителя. Если же в этом нет необходимости, то полимер выделяют из раствора различными приемами его осаждения (добавление осадителя, упаривание растворителя и др.). В этом случае существенное значение имеет глубина полимеризации, так как при неполной конверсии мономер может остаться в полимере.[3, С.81]

Основные закономерности радикальной и ионной цепной полимеризации, приводящей к образованию линейных полимеров, были рассмотрены на простейших примерах полимеризации бифункциональных соединений. Значительно сложнее протекает полимеризация полиеновых соединений, содержащих несколько двойных связей. В этом случае или образуются пространственные полимеры, или происходит циклополимеризация, в результате которой получаются полимеры с циклическими звеньями.[4, С.98]

При полимеризации бутадиена, хлоропрена, 2,3-диметилбутадиена при определенных условиях наряду с линейной полимеризацией протекает трехмерная, так называемая ^-полимеризация, за счет двойных связей, имеющихся в полимере. Характерной особенностью со-полиме-ров является их большая реакционная способность, обусловленная наличием в них свободных радикалов. Это объясняется тем, что скорость реакции обрыва цепи при полимеризации в образующейся сетке очень мала вследствие малой подвижности макрорадикалов. Подвижность молекул мономера достаточно высока, поэтому скорость трехмерной полимеризации выше скорости линейной полимеризации, причем она возрастает во времени. Это связано с тем, что быстрое накопление полимера создает местные напряжения в сетке и приводит к разрыву отдельных связей с образованием новых свободных радикалов, инициирующих полимеризацию мономера (что было показано экспериментально). С повышением температуры не наблюдается увеличения скорости трехмерной полимеризации, так как возрастает подвижность макрорадикалов и повышается скорость реакции обрыва цепи.[4, С.98]

Направление реакции полиеновых соединений определяется главным образом расстоянием между двойными связями и условиями проведения реакции. Циклополимеризация протекает наиболее легко в тех случаях, когда за счет двух ближайших двойных связей могут образовываться шестизвенные циклы — теория напряжения циклов (см. с. 134)—и реакция проводится в растворе или в эмульсии. Еще С. В. Лебедевым было показано, что при термической полимеризации[4, С.98]

Полимеризация мономеров, протекающая по радикальному механизму, в присутствии некоторых, веществ (ингибиторов) полностью или частично подавляется. Действие таких веществ основано на том, что они реагируют с первичными и растущими радикалами, превращая их в соединения, не содержащие песпаренных электронов, или в малоактивные радикалЬ]. В присутствии сильных ингибиторов полимеризация мономера полностью подавляется и возобновляется после исчерпания ингибитора в реакционной смеси. Слабые ингибиторы приводят к замедлению полимеризации.[5, С.59]

После KpaiKoro рассмотрения элементарной лабораторной техники и общих приемов работы, специфических для синтеза полимерных соединений, даются подробные методики, сгруппированные по принципу основного метода синтеза: синтез полимеров посредством реакций поликонденсации и миграционной полимеризации, полимеризация ненасыщенных соединении, полимеризация с раскрытием циклов. Большой интерес представляют синтезы, объединенные под названием неклассических методов (метод цнклоиолимер1иации несопряженных диенов, полимеризация формальдегида различными меточами, полимеризация моиоизоцианэтов, норборнилена и др.). В последней главе собраны синтезы смол, нашедших широкое промышленное применение.[6, С.4]

Изменение скорости полимеризации во времени для системы Т1СЦ — АОС описывается кривой, имеющей максимум, высота и положение которого зависят от применяемого АОС, мольного отношения компонентов катализатора и температуры полимеризации. Полимеризация этилена в присутствии систем на основе TiCl3— АОС характеризуется, как правило, значительной скоростью в начальный период; затем скорость становится стационарной.[7, С.169]

Радикальная полимеризация виниловых мономеров достаточно хоро-1 шо изучена [9,35, 36]. Полимеризация этилена под высоким давлением, которая интенсивно изучалась в последние два десятилетия [13; 37, с. 241; 38] является типичным радикальным процессом, но имеет ряд особенностей, обусловленных своеобразием природы мономера и условий его полимеризации. Полимеризация этилена, как и других виниловых мономеров, включает три основных стадии.[8, С.52]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
6. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
7. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
8. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
9. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
10. Пашин Ю.А. Фторопласты, 1978, 233 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
13. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
16. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную