На главную

Статья по теме: Полимеров колеблется

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Физические и химические свойства полимеров с системой сопряженных связей зависят также от природы цепи сопряжения (ацикли-ческая, циклическая, гетероциклическая, координационная). Удельная электропроводность, например, различных полимеров колеблется от 104 до 10~21 Ом-1 -см"1, т. е. диапазон проводимости составляет 1025 Ом~'-см~1. В зависимости от значения электропроводности полимеры с системой сопряженных связей могут быть полупроводниками с широким диапазоном электропроводности, а также диэлектриками — • изоляторами.[2, С.413]

Независимо от природы исходных мономеров и способа синтеза цепи всех полиамидов содержат сильно полярные, способные к образованию водородной связи группы —СО — NH—. Благодаря сильному межмолекулярному взаимодействию, обусловленному этими группами, полиамиды представляют собой труднорастворимые высокоплавкие полимеры с температурой плавления порядка 180—250°С. Небольшой интервал плавления (3—5°С) свидетельствует об их высокой степени кристалличности и малой полидисперсности. Молекулярная масса технических полимеров колеблется в пределах 8000—25000. Несмотря на сравнительно небольшую степень полимеризации, эти полимеры в ориентированном состоянии отличаются прочностыо и эластичностью, что связано с большим межмолекулярным взаимодействием. При вытяжке на 350—500% прочность на разрыв достигает 4000— 4500 кгс/см2.[7, С.311]

Выше мы говорили об аморфных полимерах. Если полимер состоит из макромолекул с регулярной структурой, то ближний порядок в расположении сегментов может при определенной температуре (температура кристаллизации) и за определенный период времени перейти в дальний порядок. Возникнет кристаллическая структура. В дальнейшем мы более подробно познакомимся с особенностями кристаллизации полимеров. Отметим, что полимер не может закристаллизоваться на 100%, как это происходит с низкомолекулярными веществами. Вследствие значительной перепутанности макромолекулярных клубков часть сегментов не может участвовать в построении кристалла по чисто стерическим причинам (рис. 7.7). Степень кристалличности полимеров колеблется поэтому в широких пределах от 30 до 80%. В очень регулярных полимерах содержание кристаллической части может достигать 90—95%.[1, С.103]

Вещества, молекулы которых состоят из большого числа повторяющихся атомных группировок, соединенных между собой химическими или координационными связями, называют полимерами (поли - много). Исходные соединения, из которых получаются полимеры, называют мономерами (моно - один). Молекула полимера, построенная из отдельных малых группировок (звеньев), имеющих либо одинаковые, либо разные химическое строение и состав, называется макромолекулой. Если мономер полностью входит в состав полимера, то повторяющееся звено является мономерным звеном. Полимеры могут иметь высокую в несколько миллионов углеродных единиц молекулярную массу (к таким высокомолекулярным соединениям относятся, как правило, природные полимеры и некоторые биополимеры). Почти все синтетические полимеры имеют сравнительно невысокую (среднюю) молекулярную массу (десятки тысяч углеродных единиц). Некоторые, это в основном олигомеры, имеют молекулярную массу в сотни и тысячи углеродных единиц. Характеристикой молекулярной массы полимера является степень полимеризации («), показывающая какое число раз в макромолекуле повторяется элементарное или составное ее звено. Степень полимеризации у разных полимеров колеблется от нескольких единиц до многих сотен и тысяч. Если степень полимеризации невелика, то синтезируемые продукты называют олигомера-ми (олигос - немного).[4, С.10]

Из табл. 12 видно, что интервал вынужденной эластичности для разных полимеров колеблется в широких пределах^ Так, поли-[3, С.214]

Из табл. 12 видно, Что интервал вынужденной эластичности для разных полимеров колеблется в широких пределах. Так, поли-[5, С.214]

При любом методе полимеризации образуется аморфный, атак-тический полимер с практически универсальными клеящими и связующими свойствами. Содержание звеньев, построенных по типу «голова к голове», составляет 1,5—2,0% ;[1, 12]. Молекулярная масса 'применяемых -на практике полимеров колеблется в пределах 0,1 -105—3,0-105. Поливинилацетат растворяется в спиртах, кето-нах, .ароматических углеводородах, зфирах; особенно он стоек к действию масел, алифатических углеводородов (бензину, керосину) ; набухает в воде.[8, С.195]

Для характеристики полимеров используют понятие степени кристалличности, или коэфф. кристалличности. Степень кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значение этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности меньше 20% (поливинилхлорид, нек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, напр, степень кристалличности полиэтилена низкой плотности меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тела, кристаллические полимеры при определенных темп-рных условиях обладают способностью к сравнительно большим обратимым деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. полимеров, в отличие от низкомолекулярных веществ, происходит в большом темп-рном интервале.[12, С.590]

Для характеристики полимеров используют понятие степени к р и с т а л л и ч н о с т и, или ко;>фф. кристалличности. Степень кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значение этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности меньше 20% (поливипилхлорид, нек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, напр, степень кристалличности полиэтилена низкой плотности меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тола, кристаллические полимеры при определенных темн-рпых условиях обладают способностью к сравнительно большим обратимым деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. полимеров, в отличие от низкомолекулярных веществ, происходит в большом темп-рном интервале.[11, С.593]

Специфика концентрированных растворов полимеров заключается, как уже отмечалось, в том, что отдельные макромолекулы не могут перемещаться независимо друг от друга. В таких растворах образуется сложная пространственная система взаимодействующих макромолекул и статистических надмолекулярных образований, которая и обусловливает очень высокую эффективную вязкость. Вязкость рабочих растворов волокно- и пленкообразующих полимеров колеблется в очень широких пределах. Для примера можно привести следующие данные о вязкости прядильных растворов. Растворы, предназначенные для формования волокна по методу коагуляции (так называемый «мокрый способ формова-[10, С.152]

2. Молекулярный вес полимеров колеблется в зависимости от условий полимеризации от 1000 до 600 000. Каждый из получаемых продуктов неоднороден; он может быть разделен на фракции растворением и фракционированным осаждением.[9, С.157]

цепи могут входить и другие элементы, например А1 и Ti. Кремний-органические полимеры с макромолекулами линейной структурь (ароматические и алифатические углеводороды, галогенпроизвод ные углеводороды, кетоны, эфиры) хорошо растворимы в различ ных органических растворителях. Плотность кремнийорганическю полимеров колеблется в пределах 1100—1300 кг/м3. Полиоргано силоксаны с углеводородными группами стойки к действию кис лот, щелочей, и только концентрированная серная кислота и кон центрированные щелочи вызывают расщепление связей[6, С.28]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
6. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
9. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
10. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную