На главную

Статья по теме: Получения высокопрочных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Механические свойства ориентированных полимеров и принципы получения высокопрочных волокон и пленок. При растяжении полимерных пленок, волокон и т. д. быстрая ориентация небольших участков макромолекулы приводит к немедленному выпрямлению длинных отрезков ее Это, в свою очередь, влечет за собой усиление действия межмолекулярных сил; цепи в значительной степени утрачивают способность менять конформацию, повышается эффективная жесткость макромрлекул и величина их сегментов. В результате все меньше становится подвижность отрезков цепи, обусловливающая ориентацию Следовательно, по мере своего развития ориентация будет протекать все медленнее; и наоборот, чем сильнее полимер ориентирован, тем ниже скорость его дезориентации (самоторможение). 4[11, С.465]

Одноосное ориентирование является одним из основных способов получения высокопрочных полимерных материалов, когда создается упрочнение в направлении ориентации и, как правило, разупрочнение в поперечном направлении. Это связано с тем, что для полимеров характерно наличие двух резко различных типов взаимодействий между атомами: больших внутримолекулярных сил химического взаимодействия вдоль цепных макромолекул и малых сил межмолекулярного взаимодействия. Наличие двух типов взаимодействий приводит к крайней неоднородности распределения механических напряжений в полимерном материале, что существенно влияет на такие важные для практики свойства, как упругость и прочность. При ориентировании эта неоднородность уменьшается в направлении ориентации, и как следствие повышается прочность в этом же направлении. Кроме того, при ориентации происходит концентрирование более прочных элементов структуры в одном направлении, что приводит к практически одновременному и согласованному их разрыву.[2, С.185]

На основе коллоксилина получают целлулоид и нитроцеллюлозный этрол. Коллоксилин применяют для получения высокопрочных пленок и лаков.[1, С.104]

Тканые наполнители производятся главным образом на основе хлопчатобумажных, стеклянных и углеродных тканей. Их используют для получения высокопрочных армированных анизотропных материалов. В зависимости от морфологии используют рулонные ткани, тканые ленты и шнуры, а также однонаправленные ленты, в которых несущие высокопрочные волокна «основы» соединены в непрерывную ленту редкими нитями «утка». На сегодняшний день армированные такими наполнителями пластики обладают наиболее высоким комплексом физико-механических, термодеформационных, теплофизических и эксплуатационных свойств. В качестве свя-[13, С.21]

Кроме того, практически только эпоксидные связующие могут обеспечить монолитность при больших степенях наполнения, необходимых для получения высокопрочных ориентированных пластиков.[8, С.212]

Из предыдущего рассмотрения может создаться впечатление, что в однокомпонентных системах необходимым и достаточным условием фиксации высоких степеней ориентации, необходимых для получения высокопрочных и высокомодульных волокон, является способность полимера к образованию трехмерной кристаллической решетки. Это не совсем так в силу огромной анизотропии физических свойств высокоориентированных систем.[2, С.227]

Монография является десятой книгой из серии «Химические волокна». В ней излагаются химия и технология вискозных волокон, теоретические основы, производства; приводятся принципиальные инженерно-технологические схемы. Анализируются основные закономерности получения высокопрочных и высокомодульных (хлопкоподобных) волокон.[9, С.4]

Одной из важных задач современной химической технологии является изыскание эффективных способов переработки синтетических полимеров и природных высокомолекулярных соединений в материалы для изделий массового потребления. Наиболее перспективным физико-химическим путем получения высокопрочных волокнисто-пористых синтетических материалов для одежды и обуви представляется использование процессов образования высокомолекулярных конденсационных структур, т. е. прочных пространственных сеток, возникающих при срастании и переплетении частиц новой полимерной фазы, самопроизвольно выделяющихся из метастабильных, пересыщенных растворов полимеров [1].[16, С.81]

Резко выделяющаяся по эффективности коагулирующая способность ионов цинка подчеркивается в работе Манна [11.2], который показал, что она в 130 раз превышает коагулирующую способность сульфата натрия. В следующем разделе будет показано, что с этой особой ролью ионов цинка связаны способы получения высокопрочных волокон, обладающих мелкокристаллической структурой, характерной для оболочки обычных волокон. В этой связи уместно отметить, что на эту особенность действия ионов цинка при осаждении ксантогената еще ь 1935 г. указывали Данилов [ИЗ] и Мирлас [114], которые утверждали, что процесс коагуляции в присутствии ZnSO4 протекает благодаря химической реакции образования ксантогената цинка.[9, С.215]

При высокой температуре вязкость резко снижается (Тс ПВС составляет 100—130 °С) и кристаллизация становится возможной даже в отсутствие воды, что видно по изменению ИК-спектра для прогретой пленки (см. кривая 1, рис. 44). Еще более резко возрастает степень кристалличности ПВС при температурах, близких к точке плавления, как об этом свидетельствует опыт получения высокопрочных волокон из ПВС33. Сильное увлажнение пленки даже при невысокой температуре приводит к повышению подвижности макромолекул и увеличению кристалличности полимера. Этот вывод, сделанный Прис-том32 .и Хаасом29, подтверждается данными табл. 6 и рис. 44 (кривая 2).[15, С.115]

Однако при наличии очень жестких цепей плотная упаковка вообще не может реализоваться. Например, цепи изотактического полипропилена очень гибки и могут образовывать плотпоупакован-ную кристаллическую решетку, что ни при каких условиях не может быть реализовано в случае жестких цепей целлюлозы Как будет показано в дальнейшем, это имеет решающее значение для получения высокопрочных волокон.[7, С.134]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Серков А.Т. Вискозные волокна, 1980, 295 с.
10. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
14. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
15. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
18. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
19. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
26. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную