На главную

Статья по теме: Радиационная деструкция

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Радиационная деструкция 106 Радиосенсибилизаторы 106 Разбавители 134 Разделение[2, С.278]

Радиационная деструкция (радиолиз) полимеров протекает под влиянием излучений высокой энергии (рентгеновские и -у-лучи, нейтроны, протоны, быстрые электроны, а-частицы и др.). Энергия этих излучений составляет 9 — 10 эВ, а энергия химических связей в полимерах — 2,5 — 4,0 эВ Поэтому такие излучения способны вызвать разрыв связей, однако это происходит не всегда, поскольку часть энергии рассеивается, например в виде теплоты. Под влиянием ионизирующих излучений в полимерах происходят глубокие структурные и химические измене пня. Регулируя интенсивность излучения, можно изменять свойства полимера в заданном направлении, например переводить их в неплавкое, нерастворимое состояние. Так, облученный полиэтилен характеризуется очень высокой термостойкостью, химической стойкостью и другими ценными свойствами.[3, С.213]

Радиационная деструкция происходит более интенсивно при повышении температуры, а также в присутствии кислорода воздуха, который в ряде случаев резко ускоряет деструкцию. Например, поливинилиденфторид при облучении в вакууме структурируется, а при облучении на воздухе деструктируется. Радиационное окисление связано с присоединением молекул кислорода к свободным радикалам и образованием перонсид-иых радикалов. Последующие превращения радикалов приводят к образованию устойчивых высокомолекулярных соединений с кислородсодержащими функциональными группами (карбонильными, карбоксильными, гидроксильными и др.) или низкомолекулярных кислородсодержащих продуктов (СО, СОП, Н2О и др.). Процесс радиационного окисления можно иллюстрировать следующей схемой:[3, С.215]

В противоречие с ранними исследованиями [185], было установлено, что в присутствии воздуха радиационная деструкция ПММА замедляется [195, 199]. Для объяснения этого факта были высказаны различные предположения, связывающие действие кислорода или с образованием перекисных связей между первоначально образующимися при разрыве главных цепей фрагментами макромолекул [199], или с возникновением — независимо от реакций деструкции — перекисных поперечных связей [195], или с захватом молекулами кислорода электронов с образованием молекулярных ионов OQ и снижением вследствие этого скорости деструктивных процессов, протекающих с участием электронов [200]. Примерно аналогичный механизм, связанный с захватом электронов, был предложен для объяснения конкурирующей роли кислорода при облучении ПММА, содержащего различные красители [201]. Наличие в облученном на воздухе ПММА групп, распад которых ускоряется в присутствии следов /npem-бутилкатехина, гидрохинона и диме-тиланилина и которые придают полимеру способность инициировать полимеризацию винильных соединений, в известной мере подтверждает гипотезы, приписывающие основную роль в рассматриваемом явлении наличию перекисей [193, 194, 196, 199]. При соприкосновении с воздухом ПММА, предварительно облученного в вакууме, наблюдается наложение асимметричного спектра электронного парамагнитного резонанса, обусловленного перекисным радикалом, на симметричный спектр ЭПР исходного радикала, состоящий из пяти линий (плюс четыре плеча) [202]. Из спектров ЭПР было найдено, что скорость гибели радикалов, непосредственно образовавшихся под пучком, так же как и вторичных перекисных радикалов, подчиняется кинетическим уравнениям второго порядка. Механизм реакции, по которой перекисные радикалы могут образовать перекисные поперечные связи, предположение о существовании которых было высказано, неясен. Недавно была исследована кинетика снижения молекулярного веса облученного ПММА в период последействия и обсуждены некоторые возможные механизмы этого процесса [203].[7, С.102]

Радиационная деструкция происходит при воздействии на полимеры у-лучей, а- и р-частиц, нейтронов. Энергия проникающей радиации значительно превосходит энергию химических связей в макромолекулах. Возникающие при этом свободные радикалы «захватываются» полимером и существуют в нем очень долго, разрушая его во времени.[5, С.70]

В присутствии кислорода радиационная деструкция ПТФЭ резко усиливается. В результате тщательного удаления кислорода были получены образцы ПТФЭ, которые сохраняли 43% исходной разрывной прочности при дозе у-излучения, в восемь раз превышающей дозу, снижающую прочность ПТФЭ до нуля при его облучении на воздухе [265, 287]. Был сделан вывод о поверхностном окислении ПТФЭ под действием излучения. Основанием для такого вывода явилось снижение краевого угла смачивания ПТФЭ каплями воды [289]. Была исследована кинетика образования перекисных радикалов типа —GF2(CFOO-)CF2 — и — CF2CF200- [286, 290], и установлено, что первый из этих радикалов возникает и гибнет по обратимой реакции. Аналогично этому в результате исследования спектров ЭПР была установлена обратимость реакции, протекающей в присутствии N0[7, С.113]

Было высказано предположение, что радиационная деструкция ИБ осуществляется путем диспропорционирования[7, С.109]

Работа растяжения 143 Радиальные сферолиты 176 Радиационная деструкция 68 Радиационно-химическое инициирование 9 Радикальная полимеризация 7, 23[1, С.221]

По сравнению с большим числом исследований, посвященных радиа-ционно-химическим превращениям ПТФЭ, радиационная деструкция других галогенсодержащих полимеров исследована недостаточно.[7, С.114]

Деструкция полимера по закону случая и деполимеризация могут протекать при нагревании полимера (термическая деструкция); действии на него света (фотодеструкция); радиации с высокой энергией (радиационная деструкция); деформации сдвига, ультразвука, многократного и быстрого замораживания полимерного раствора, перемешивания с высокой скоростью (механодеструкция); химических агентов (хемодеструкция); ферментов, бактерий, грибков (биодеструкция).[6, С.237]

В присутствии воздуха процессы радиационной деструкции дек-страна усиливаются [326]. Методом ЭПР в облученном декстране было обнаружено присутствие стабильных свободных радикалов. Была выдвинута гипотеза, согласно которой радиационная деструкция декстрана протекает путем первоначального образования ион-радикала, диссоциирующего с образованием положительно заряженного иона и алкоксира-дикала. Низкомолекулярные продукты, образующиеся в результате облучения у-лучами декстрана в водном растворе, содержат глюкозу, изомальтозу, глюконовую кислоту, глюкороновую кислоту, глиоксаль, эритрозу и глицериновый альдегид, что указывает на сложный характер расщепления цепей [330]. Результаты такого анализа, так же как и дан-[7, С.117]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
2. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
7. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
12. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную