На главную

Статья по теме: Свободным радикалам

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Радиационное окисление происходит при облучении на воздухе или в атмосфере кислорода. Оно связано с присоединением молекул кислорода к свободным радикалам и образованием перекисных радикалов. Последующие атомные перестройки или рекомбинация приводят к образованию устойчивых высокомолекулярных соединений с кислородсодержащими группами (карбонильными, карбоксильными, гидро-ксилышми и др.) или низкомолекулярных кислородсодержащих продуктов радиолиза (СО, СО2, Н2О и др.). Пример одной из простейших схем радиационного окисления:[13, С.129]

Радиационное окисление происходит при облучении на воздухе или в атмосфере кислорода. Оно связано с присоединением молекул кислорода к свободным радикалам и образованием перекисных радикалов. Последующие атомные перестройки или рекомбинация приводят к образованию устойчивых высокомолекулярных соединений с . кислородсодержащими группами (карбонильными, карбоксильными, гидро-ксильными и др.) или низкомолекулярных кислородсодержащих продуктов радиолиза (СО, С02, Н20 и др.). Пример одной из простейших схем радиационного окисления:[14, С.129]

Рост реакционной цепи. Реакции роста и обрыва цепей не зависят от способа возбуждения мономера. Рост цепи лолимера осуществляется путем присоединения к свободным радикалам молекул мономера (образование макрорадикалов). Реакция роста цепи определяет скорость процесса полимеризации, молекулярный вес полимера и строение полимерной цепи, т. е. характер последовательного присоединения мономеров («голова к хвосту* или «голова к голове»), степень разветвленное™ и т. д.[4, С.41]

Рост реакционной цепи. Реакции роста и обрыва цепей не зависят от способа возбуждения мономера. Рост цепи полимера осуществляется путем присоединения к свободным радикалам молекул мономера (образование макрорадикалов). Реакция роста цепи определяет скорость процесса полимеризации, молекулярный вес полимера и строение полимерной цепи, т. е. характер последовательного присоединения мономеров («голова к хвосту» или «голова к голоае»), степень разветвленное™ и т. Д.[8, С.41]

Кроме того, .многие океанические полупроводники (полимеры, угля, комплексы с переносом заряда), несмотря на то, что по химической структуре пк молекулы никак нельзя отнести к обычным свободным радикалам, дают узь.ий ситнал ЭПР, интенсивность которого часто соответствует концентрации неспарсн-ных электронов $. харякгепжж для таакх стабильных радикалов, как днфенвд-пикрилгидразнл (где jV-=slOJI на 1 г, т. е. один нсспарсниый спин на молекулу).[4, С.303]

Интересным способом модификации полимеров является их взаимодействие с ненасыщенными низкомолекулярными соединениями. Например, реакция полидиенов с малеиновым ангидридом и малеимидом. Симметрично замещенные производные этилена сами практически не полимеризуются, но могут присоединяться к свободным радикалам или двойным связям. В соответствии с этим реакция полидиенов, например, с малеиновым ангидридом протекает по двум механизмам. При температурах выше 180°С имеет место термическое присоединение по следующей схеме:[3, С.285]

В табл. 6.1 для 35 различных полимеров указаны применяемые в настоящее время способы приготовления образца (метод измельчения, температура, окружающая среда), обработки измельченного образца, температуры, при которых получены спектры ЭПР, и соответствия полученных спектров основным и (или) вторичным свободным радикалам. Общий вывод практически всех известных работ по ЭПР [4—36] на измельченных полимерах заключается в том, что механическое воздействие вызывает разрыв основной связи цепи и образование радикалов на концах цепи (первичных радикалов). Единственным исключением из данного правила служат замещенные полидиметилсилоксаны (№ 32—35), у которых связь Si—О разрушается в соответствии с ионным механизмом разложения, а не путем гемолитического разрыва цепи [36]. Никогда свободные радикалы не образуются путем механического отрыва боковых групп или атомов от основной цепи. Чтобы это произошло, необходимы напряжения, которые невозможно создать на относительно небольших боковых группах, имеющихся у материалов, перечисленных в табл. 6.1. Действительно, попытки разрушения низкомолекулярных соединений (парафины, этанол, бензол), молекулярная масса которых равна или больше, чем у подобных боковых групп, оказались безуспешными, хотя применяемые механические средства идентичны тем, которые с успехом используются для разрывания макромолекул [13, 14, 62].[1, С.165]

Очевидно, при вулканизации смесей без НДФА протекают процессы двух видов. Основным является многостадийный гетерогенный процесс ускоренной серной вулканизации, в .результате которого образуются сравнительно устойчивые диалкенильные полисульфидные поперечные связи [3]. Наряду с этим сера присоединяется к свободным радикалам, образующимся в НК в результате распада гидроперекисей, слабых связей и др. [88, с. 164]. Диффундирующая в массе каучука свободная сера концентрируется в этих центрах [90] и, реагируя с каучуком, обусловливает образование вулканизацион-ных структур с поперечными связями алкенилалкильного типа высокой сульфидности [3]. Прочностные свойства исследованных вулканизатов определяются значением 1/Мс и практически не зависят от химического строения полисульфидных связей*. Однако алкенилалкильные полисульфидные связи легко перегруппировываются при перевулканизации, что вызывает внутримолекулярную модификацию и ухудшение прочностных свойств вулканизатов.[10, С.237]

Основной способ защиты полимеров от старения - введение специальных веществ - стабилизаторов, которые предохраняют полимерные материалы от старения. Существует много типов стабилизаторов; одни из них взаимодействуют со свободными радикалами, предотвращая их действие на полимер, другие не дают возможность возникать свободным радикалам, третьи замедляют окислительную деструкцию (антиокси-данты), четвертые ингибируют цепные процессы разложения или процессы соединения макромолекул (ингибиторы), пятые рассеивают или поглощают свет и радиактивное излучение (антирады).[7, С.115]

Радиационная деструкция происходит более интенсивно при повышении температуры, а также в присутствии кислорода воздуха, который в ряде случаев резко ускоряет деструкцию. Например, поливинилиденфторид при облучении в вакууме структурируется, а при облучении на воздухе деструктируется. Радиационное окисление связано с присоединением молекул кислорода к свободным радикалам и образованием перонсид-иых радикалов. Последующие превращения радикалов приводят к образованию устойчивых высокомолекулярных соединений с кислородсодержащими функциональными группами (карбонильными, карбоксильными, гидроксильными и др.) или низкомолекулярных кислородсодержащих продуктов (СО, СОП, Н2О и др.). Процесс радиационного окисления можно иллюстрировать следующей схемой:[5, С.215]

Принимая за основу механо-химическую стадию реакции (XIV-1), можно предсказать, что многие другие вещества могут действовать подобно кислороду, связывая полимерные свободные радикалы, вследствие чего реакция деструкции пойдет до конца. Это было подтверждено пластикацией в инертной среде натурального каучука, содержащего 1 или 2% соединений, реакционноспособных по отношению к свободным радикалам, типа образующихся при разрыве цепи полимера[12, С.479]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Смирнов О.В. Поликарбонаты, 1975, 288 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
10. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
11. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
12. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную