На главную

Статья по теме: Радикалов способных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Затем активированный мономер М распадается гомолитически с образованием радикалов, способных инициировать полимери-[2, С.16]

Инициирование. Инициирование состоит в создании в реакционной системе свободных радикалов, способных начинать реакционные цепи. Наиболее распространенный метод инициирования полимеризаций основан на проведении в среде мономера термического гемолитического разложения нестойких веществ — инициаторов. В качестве инициаторов широко используют различные типы пероксидов: диалкилпероксиды (пероксид ди-трет-бутила), гидро-пероксиды (гидропероксид кумила), перэфиры (грвг-бутилпербён-[3, С.7]

Привитые сополимеры можно получать также на основе полимерных сбединений, содержащих пероксидные и гидропероксид-ные группы (макромолекулярные инициаторы пероксидного типа). Эти соединения в определенных условиях распадаются с образованием свободных радикалов, способных инициировать полимеризацию мономеров, находящихся в реакционной системе. Введение в макромолекулы перекисных и гидроперекисных групп осуществляется путем окисления полимеров (кислородом или озоном) либо путем облучения исходных полимеров ионизирующими излучениями на воздухе. В общем виде реакция протекает по схеме[3, С.64]

Возникшие при разрыве свободные радикалы способны к самым разнообразным реакциям (стр 39), которые могут приводить к образованию полимеров разветвленного и даже пространственного строения Вследствие большой вязкое in полимеров вероятность столкновения радикалов, способных реагировать друг с другом, мала. Поэтому при однократной деформации процесс структурирования полимера протекает Сравнительно медленно^ Многократкая деформация образца повышает вероятность столкновения радикалов, что вызывает ускоренное структурирование. Таким образом, чтобы предотвратить утомление полимерных материалов, необходимо создать условия, при которых было бы невозможно образование свободных радикалов[4, С.230]

Эффективность действия АХ может быть обусловлена также его влиянием на нежелательные процессы, протекающие при щелочных варках из-за остаточного кислорода в древесине и варочном растворе. Восстановленные формы катализатора, взаимодействуя с кислородом и его активными формами (см. 13.3.2), ослабляют окислительную деструкцию полисахаридов и препятствуют образованию в лигнине феноксильных радикалов, способных к реакциям рекомбинации, приводящим к конденсации лигнина.[6, С.484]

Инициирование радикальной полимеризации сводится к созданию в реакционной среде свободных радикалов, способных начать реакционные цепи. Стадия инициирования включает две реакции: возникновение первичных свободных радикалов инициатора[7, С.40]

Образующиеся под действием кислорода, Уф-лучей или механических воздействий активные пероксидные радикалы ROO* атакуют полимерную цепь по реакции (2). От концентрации этих радикалов и скорости реакции (2) зависит процесс окисления резины в целом. По мере накопления гидроперок-сида ROOH происходит его распад с образованием свободных радикалов, способных генерировать новые цепи окисления[8, С.280]

Возникшие при разрыве свободные радикалы способны к самым разнообразным реакциям (стр 39), которые могут приводить к образованию полимеров разветвленного и даже пространственного строения Вследствие большой вязкое iи полимеров вероятность столкновения радикалов, способных реагировать друг с другом, мала. Поэтому при однократной деформации процесс структурирования полимера протекает Сравнительно медленно. Многократная деформация образца повышает вероятность столкновения радикалов, что вызывает ускоренное структурирование. Таким образом, чтобы предотвратить утомление полимерных материалов, необходимо создать условия, при которых было бы невозможно образование свободных радикалов[9, С.230]

Так как распад гидроперекисей ROOH приводит к возникновению активных радикалов, способных отрывать водород от макромолекулы, происходит разветвление реакционной цепи, приводящее к постепенному ускорению окисления:[10, С.627]

При многих окислительно-восстановительных реакциях происходит образование свободных радикалов, способных вызывать полимеризацию виниловых соединений. Простейшим примером такой реакции является взаимодействие иона двухвалентного железа с перекисью -водорода. Первая стадия этой реакции согласно механизму, предложенному Габе-ром и Вейссом [77], а именно:[11, С.52]

Фотоокисление ионов переменной валентности также может приводить к образованию радикалов, способных инициировать полимеризацию. Эджикомб и Норриш [153] нашли, что при облучении ультрафиолетовым светом кислых растворов Се3+, содержащих акрилонитрил или метилакрилат, происходит образование полимера, причем атомы церия не входят в полимерную цепь (отличие от темновой полимеризации под действием Се4+). Реакция, по-видимому, протекает следующим образом:[11, С.66]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
8. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
9. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
12. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
13. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную