На главную

Статья по теме: Расположения функциональных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Важным вопросом является установление взаимного расположения функциональных групп, от которого зависят гибкость макромолекул и способность их к кристаллизации. В некоторых случаях такие сведения могут быть получены при исследовании продуктов деструкции, однако чаще всего эта задача решается изучением отношения самой макромолекулы к специальным реактивам или при помощи спектральных методов. Например, известно, что периодат-ные ионы не окисляют <~СН2СН(ОН)СН2СН(ОН) ~, хотя такая реакция успешно протекает в случае ~СН2СН(ОН)СН(ОН)СН2~, являющегося 1, 2-гли колем:[7, С.18]

Молекулы полиэтилентерефталата линейны, и для них характерна регулярность расположения функциональных групп. Такое строение макромолекул определяется высокой молекулярной симметрией исходных мономе-"ров — терефталевой кислоты и этиленгликоля. Сообщалось [1 ], что в промышленных образцах полиэтилентерефталата присутствуют и нелинейные макромолекулы, делающие молекулярно-массовое распределение несколько более узким, чем это следует из теории. Такие разветвленные макромолекулы могут появиться в результате термоокислительной деструкции.[4, С.101]

Расположение функциональных групп по длине макромолекулы влияет на их химические свойства. В частности, стойкость карбоцеппых полимеров к деструкции зависит от расположения Функциональных групп: она ниже, если группы расположены РЯДОМ. Например, макромолекулы поливинилового спирта нормального строения[5, С.159]

Однако если судить о свойствах жидких каучуков при пониженных температурах по коэффициенту морозостойкости Км эластомеров на их основе [64], то хорошо видно влияние взаимного расположения функциональных групп, которое может даже оказаться сильнее влияния температуры стеклования каучука (при использовании одинаковых отверждающих агентов) (табл. 6). Полибутадиен, содержащий только концевые карбоксильные группы, обладает наименьшей температурой стеклования, однако величина /См сильно изменяется с понижением температуры и достигает значение 0,5 уже при —5°С. Достаточно ввести в[1, С.437]

Полиарилаты ароматических дикарбоновых кислот благодаря высокому содержанию в полимерной цепи ароматических звеньев обладают высокими температурами размягчения. Температура размягчения полиарилатов зависит от расположения функциональных групп в исходном бис-феноле и дикарбоновой кислоте, а также от природы заместителей у центрального атома бис-фенола, если в реакцию взят двухъядерный б«с-фенол[9, С.259]

Модификации шинных резин олигомерами с функциональными группами посвящена работа [118]. В качестве концевых групп были нитрозо-, карбокси- и эпокси-группы. Показано, что степень структурных изменений резины зависит от химической природы основной цепи олигомера, концентрации, расположения функциональных групп и дозировки олигомера, типа соагента олигомера. Разработаны рецептуры конкретных резин, модифицированных олигомерами с нитрозо-группами, обеспечивающие повышенную стойкость к тепловым воздействиям в присутствии агрессивных сред. Обкладочные резины, модифицированные системами с карбоксилсодержащим олигомером, характеризуются более высокими адгезионными показателями свойств. Протекторные резины, модифицированные эпоксидным олигомером, обладают повышенной износостойкостью.[6, С.140]

Таким образом, химические реакции полимеров имеют много общего с подобными реакциями их низкомолекулярных аналогов. Однако специфика полимеров вносит и существенные отличия. Для полимеров характерно неполное превращение реагирующих функциональных групп. Физическое, фазовое состояние полимеров может заметно влиять на это отличие — доступ реагента может быть облегчен или затруднен к местам расположения функциональных групп в макромолекулах. Поэтому характерным признаком продуктов химических превращений полимеров является их композиционная неоднородность. Классификация химических реакций полимеров учитывает изменения как химической, так и физической структуры макромолекул. Примеры полимераналогичных, внутримолекулярных и межмакромолекулярных реакций хорошо подтверждают этот тезис. Химические реакции определяют пути стабилизации и модификации свойств полимеров.[3, С.230]

Дипольные силы возрастают с увеличением степени ориентации отдельных звеньев соседних макромолекул относительно друг друга и с понижением температуры. Дипольная структура звеньев макромолекул способствует увеличению сил межмолекулярного взаимодействия, благодаря чему повышается прочность, твердость и теплостойкость полимера, но одновременно ухудшается его морозостойкость и диэлектрические свойства. Путем изменения количества и взаимного расположения функциональных групп в звеньях макромолекул можно варьировать свойства полимера.[2, С.29]

Третья особенность заключается в многообразии структуры макромолекул. В большинстве полимеров каждое звено цепи содержит функциональные группы, расположение которых может быть весьма хаотичным. Наряду с сочетанием «голова к хвосту» имеются сочетания «голова к голове)' или «хвост к хвосту». Вследствие этого некоторые функциональные группы находятся при двух соседних углеродных атомах, в других звеньях функциональные группы находятся по отношению друг к другу в положении 1—4. Полифункциональность макромолекул и возможность близкого взаимного расположения функциональных групп вызы-нает многочисленные побочные реакции, протекающие одновременно с основным процессом химического превращения. К числу таких побочных процессов относится возможное внутримолекулярное взаимодействие функциональных групп, часто приводящее к образованию циклических структур или ненасыщенных «связей, а также межмолекулярные реакции, вызывающие появление поперечных мостиков между цепями макромолекул.[2, С.171]

* В ароматическом ряду активность мономеров зависит от взаимного расположения функциональных групп и может быть оценена при помощи уравнения Гаммета — Тафта (см. с. 201).[7, С.45]

нием длины углеродной цепи алифатических диаминов температуры размягчения и нитеобразования полиамидов понижаются. Фосфорсодержащие полиамиды, в состав которых входят остатки ароматических диаминов, имеют более высокие температуры плавления, чем полиамиды, полученные из алифатических гликолей. Авторы полагают, что это объясняется более жесткой структурой макромолекулы первых. Во всех случаях сохраняется влияние четного числа метиленовых групп в ряду алифатических диаминов и изомерии расположения функциональных групп в ряду ароматических диаминов на температуру плавления полиамидов. Замена метильной группы у фосфора на фенильную приводит к получению полиамидов с более высокой температурой размягчения.[8, С.351]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
9. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную