На главную

Статья по теме: Зависимость теплоемкости

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Зависимость теплоемкости от температуры и плотности от давления для полимеров:[1, С.623]

Зависимость теплоемкости от температуры. В точке стеклования наблюдается скачок теплоемкости. Современные сканирующие приборы позволяют на тонких образцах вести нагревание со скоростью до десятков градусов в минуту. При этом измеряют чаще всего не теплоемкость, а температуру в образце, который нагревается с постоянной скоростью. При переходе из стеклообразного состояния в высокоэластическое теплоемкость резко увеличивается, что приво-[4, С.144]

Теория позволяет вычислить температурную зависимость теплоемкости, если известна модель межатомных сил. В ряде простых случаев теоретические расчеты хорошо совпадали с результатами экспериментальных исследований. Однако расчет частотного спектра, знание которого позволяет вывести формулу для теплоемкости, оказывается очень трудной задачей. Для этого необходимо знать все силовые постоянные и потенциал взаимодействия между атомами. Однако и тогда решение секуляр-ного уравнения оказывается достаточно сложным. Кроме того, в реальных твердых телах приходится иметь дело со сложными решетками. Если элементарная ячейка такой решетки содержит п структурных элементов, то к акустическим ветвям, получающимся при решении секулярного уравнения, добавляются 3 (п—1) оптических ветвей, которые при определенных условиях отделены друг от друга и от акустических ветвей энергетическими щелями. Все это значительно осложняет расчет спектра нормальных колебаний.[8, С.113]

Рис. П.4. Зависимость теплоемкости от температуры и плотности от давления для полимеров:[1, С.621]

Рис. 5.47. Зависимость теплоемкости от температуры кристаллического (/) и аморфного (2) полиэтилена[6, С.354]

Рис. 10.17. Зависимость теплоемкости отожженных образцов поливинилацета-та от температуры при нагревании их с разными скоростями (/ — 01 К/мин; 2 — 0,4 К/мин и 3 — 1,5 К/мин)[3, С.268]

Температурная зависимость теплоемкости полимеров имеет определенную специфику. Весьма существненным является то, что теплоемкости аморфных и кристаллических полимеров значительно различаются. Теплоемкость аморфных полимеров, как правило, выше, чем теплоемкость частично кристаллических (особенно сильно закристаллизованных) полимеров. Интересно было бы выяснить, как изменяется теплоемкость при изменении степени кристалличности одного и того же полимера. Однако достаточно изученным для такого анализа кристаллическим полимером может быть лишь полиэтилен.[8, С.128]

Выше Тс аморфный полимер может находиться в высоко-эластическом или вязкотекучем состоянии В этой области температур для аморфных полимеров, так же как и для кристаллических, существует линейная зависимость теплоемкости от температуры с температурным коэффициентом АСр/дТ, в среднем равным 1,2-10~3, Ниже приведены значения мольной теплоемкости Ср некоторых полимеров при 293 К [Дж/(моль-К)]-.[6, С.356]

Самостоятельный интерес для физико-химии наполненных систем представляет исследование влияния наполнителей на кристаллизацию олигомеров [131, 133]. Калориметрическим методом было исследовано влияние аэросила и коллоидного графита на. температурную зависимость теплоемкости закаленных и отожженных образцов олигодиэтилёнгликольадипината с молекулярной массой 2000 (ОЭГА-2000). Введение наполнителей в олигомер приводит к изменению ширины интервалов стеклования и кристаллизации из высокоэластического состояния, а также тепловых эффектов кристаллизации и абсолютного скачка теплоемкости при стекловании закаленных образцов. Тепловые эффекты кристаллизации изменяются немонотонно, проходят через максимум, соовтетствую-щий содержанию наполнителя 0,55% (об.).[7, С.69]

Выше Гс характер температурной зависимости теплоемкости может осложниться вследствие фазовых переходов первого рода —• кристаллизации и плавления (рис. 5,48) Кристаллизация сопровождается экстремальным уменьшением теплоемкости с максимумом при температуре максимальной скорости кристаллизации, а плавление — экстремальным ростом теплоемкости с максимумом при температуре плавления. После плавления кристаллов зависимость теплоемкости от температуры снова приобретает линейный характер и при высокой температуре теплоемкость всех тел составляет да 25 Дж/(моль-К) (закон Дюлоя-га — Пти).[6, С.357]

Таким образом, теория Дебая рассматривает сложное движение центров масс связанных между собой N элементов решетки. Это сложное движение (колебания решетки) предполагается эквивалентным движению 3N независимых одномерных гармонических осцилляторов. Координаты этих гармонических осцилляторов называются нормальными координатами, а их колебания называются нормальными колебаниями. Внутренняя энергия и теплоемкость твердого тела состоят из аддитивных вкладов отдельных нормальных колебаний. Для расчета теплоемкости (вывода формулы, описывающей зависимость теплоемкости от температуры) необходимо знать частотный спектр нормальных колебаний. Частотный спектр нормальных колебаний может быть рассчитан теоретически путем использования так называемого секулярного уравнения. В случае простой решетки решение секулярного уравнения содержит три частотных (акустических) ветви, которые соответствуют трем возможным независимым ориентациям вектора поляризации волн решетки, т. е. трем типам упругих волн, возбужденных в решетке (двум поперечным и одной продольной). Простота формулы Дебая и является следствием ряда упрощений, сделанных при ее выводе. В значительно большей степени атомное строение твердых тел было учтено в теории теплоемкости, предложенной Борном и Карманом [3]. В этой теории твердое тело рассматривается как решетка, состоящая из точечных масс, соединенных между собой пружинами. Борн и Карман не только рассмотрели действие центральных сил, но попытались учесть силы, действующие между атомами на более дальних расстояниях. В случае наиболее простой модели, какой является одномерная модель с центральными силами, действующими между ближайшими соседними атомами, они показали, что допущение Дебая о том, что дисперсия скорости упругих волн отсутствует, неправомерно. В теории Борна — Кармана учитывалось, что граничная частота шт (частота «обрезания» спектра нормальных колебаний) должна[8, С.112]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
8. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
9. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
10. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
11. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
12. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
13. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную