На главную

Статья по теме: Теплоемкости полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Большинство экспериментальных данных по удельной теплоемкости полимеров относится к интервалу температур, нижняя граница которого соответствует температуре жидкого водорода (~20 К), а верхняя — температуре плавления. Этот интервал температур оказывается достаточным, чтобы по измеренным значениям удельной теплоемкости рассчитать основные термодинамические параметры полимеров (энтальпию, энтропию), имеющие важное техническое значение. Между тем, чтобы выяснить механизм теплоемкости полимеров, наиболее важны измерения, проведенные при более низких температурах. Измерение теплоемкости полимеров в интервале температур от 1 до 20 К представляет наибольший интерес для сопоставления экспериментальных данных с теоретическими расчетами, а также для выяснения тех особенностей полимеров, которые отличают их от низкомолекулярных твердых тел. Попытки экстраполировать значения удельной теплоемкости полимеров, измеренные при 20 К, на область более низких температур, как правило, не приводят к содержательным результатам.[4, С.126]

В области фазовых переходов (плавление, кристаллизация) также наблюдается резкое изменение теплоемкости полимеров. Эти процессы обычно изучаются методами адиабатной калориметрии (точность которой в результате применения электронных схем является достаточно высокой) в широком интервале температур. На температурных зависимостях теплоемкостей полимеров [10.6] проявляются характерные пики (рис. 10.17), которые с увеличением скорости нагревания сдвигаются в сторону повышенных температур (при этом высота их увеличивается). Такой характер изменения теплофизических свойств при переходе поливинилацетата (ПВА) из твердого состояния в жидкое обусловлен релаксационной природой процесса размягчения и связан с тепловой предысторией образцов. Так как температура стеклования ПВА равна 35° С, выдержка его при комнатной температуре равносильна хорошему отжигу.[1, С.267]

Теории теплоемкости полимеров Теплоемкость кристаллических и аморфных полимеров[4, С.4]

Теории теплоемкости полимеров[4, С.114]

Измерение теплоемкости полимеров в широком диапазоне температур дает информацию о характере тепловой подвижности повторяющихся элементов цепи макромолекулы и его изменении при фазовых (плавление, кристаллизация, полиморфное превращение кристалла) или физических (стеклование) переходах. В области низких температур, в которой производится большинство прецизионных измерений, экспериментальные значения теплоемкости полимеров, находящихся в твердом состоянии, подобно теплоемкости других твердых тел, являются монотонно возрастающей функцией температуры, достигая относительного «насыщения» при некоторой характеристической, так называемой дебаевской температуре, соответствующей возбуждению всех внутримолекулярных («скелетных») колебательных степеней свободы полимерной цепочки [1]. Абсолютные теплоемкости полимеров в этой области температур (вблизи 300 К) сравнительно мало изменяются в гомологическом ряду, однако проявляют заметную зависимость от массы повторяющихся звеньев цепи [1], что может быть качественно учтено следующими эмпирическими соотно шениями [2, 3]:[5, С.6]

Попытки расчета теплоемкости полимеров на основании химического строения повторяющегося звена предпринимались неоднократно. Рассмот-[2, С.392]

Температурная зависимость теплоемкости полимеров имеет определенную специфику. Весьма существненным является то, что теплоемкости аморфных и кристаллических полимеров значительно различаются. Теплоемкость аморфных полимеров, как правило, выше, чем теплоемкость частично кристаллических (особенно сильно закристаллизованных) полимеров. Интересно было бы выяснить, как изменяется теплоемкость при изменении степени кристалличности одного и того же полимера. Однако достаточно изученным для такого анализа кристаллическим полимером может быть лишь полиэтилен.[4, С.128]

Значения (сглаженные) удельной теплоемкости полимеров в вависимости от температуры (табл. 4.3—4.66) были заимствованы непосредственно из таблиц, приведенных в оригинальных работах, или определены из крупномасштабных графиков, построенных по экспериментальным данным. Средняя погрешность табулированных значений удельной теплоемкости не превышает 0,5—1 %.[6, С.225]

Из теории Дебая следует, что формула (4.22) должна быть справедлива для твердых тел при Г<Сбс/12. Однако результаты экспериментального исследования теплоемкости полимеров при низких температурах [4] показывают, что и при выполнении этого условия выше 5—10 К формула Дебая даже качественно не описывает температурную зависимость Cv. Это связано с тем, что дебаевская теория теплоемкости не учитывает анизотропию сил межатомного взаимодействия, имеющую место в полимерных цепях. Одна из первых теорий теплоемкости, которую можно было применить для описания тепловых свойств полимеров, была предложена Тарасовым.[4, С.114]

Природа изменения теплоемкости ф Изучение зависимости теплоемкости полимеров от температуры[1, С.6]

Важнейшими экспериментальными методиками, применяющимися для измерения теплоемкости полимеров, являются адиабатическая и динамическая калориметрия. Относительная погрешность определения теплоемкости с помощью прецизионных адиабатических калориметров находится в пределах 0,1—0,5%. Однако недостатками этого метода являются необходимость применения больших (несколько десятков граммов) масс образца, низкая (до 1 град/мин) скорость ступенчатого повышения температуры, длительные интервалы между повышениями температуры для достижения теплового равновесия и др. По этим причинам адиабатические калориметры оказываются малопригодными для определения теплоемкости в температурном диапазоне структурных превращений полимера (в особенности, протекающих с большой скоростью), и чаще всего используются для низкотемпературных абсолютных измерений. Указанных недостатков лишены малоинерционные динамические калориметры, в которых используется широкий (от 0,05 до 50 град/мин и выше) диапазон скоростей непрерывного нагрева полимерных образцов, масса которых не превышает 0,01—0,2 г [1]. Относительная погрешность измерения теплоемкости с помощью динамических калориметров обычно на порядок выше, но путем тщательной калибрации прибора на стандартных веществах она может быть уменьшена до 0,5—1%.[5, С.7]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
5. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
6. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.

На главную