На главную

Статья по теме: Частицами наполнителя

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Пластики с частицами наполнителя малых размеров, равномерно распределенными но материалу, характеризуются изотропией свойств, оптимум к-рых достигается при степени наполнения, обеспечивающей адсорбцию всего объема связующего поверхностью частиц наполнителя. При повышении теми-ры и давления часть связующего десорбируется с поверхности наполнителя, благодаря чему материал можно формовать в изделия сложных форм с хрупкими армирующими элементами. Мелкие частицы наполнителя, в зависимости от их природы, до различных пределов повышают модуль упругости изделия, его твердость, прочность при нагружении, придают ему фрикционные или антифрикционные качества (см. Антифрикционные полимерные материалы, Фрикционные полимерные материалы), теплоизоляционные, теплопроводящие или электропроводящие свойства (см. Диэлектрические свойства, Электропроводные полимерные материалы, Металла наполненные пластики).[17, С.318]

Пластики с частицами наполнителя малых размеров, равномерно распределенными по материалу, характеризуются изотропией свойств, оптимум к-рых достигается при степени наполнения, обеспечивающей адсорбцию всего объема связующего поверхностью частиц наполнителя. При повышении темп-ры и давления часть связующего десорбируется с поверхности наполнителя, благодаря чему материал можно формовать в изделия сложных форм с хрупкими армирующими элементами. Мелкие частицы наполнителя, в зависимости от их природы, до различных пределов повышают модуль упругости изделия, его твердость, прочность при нагружении, придают ему фрикционные или антифрикционные качества (см. Антифрикционные полимерные материалы, Фрикционные полимерные материалы), теплоизоляционные, теплопроводящие или электропроводящие свойства (см. Диэлектрические свойства, Электропроводные полимерные материалы, Металлонаполненные пластики).[23, С.316]

Для оценки характера взаимодействия полимера с частицами наполнителя и определения энергии связи может быть использован метод элюирования полимера из наполненной системы [195]. Наличие химических связей между компонентами системы в ряде случаев может быть выявлено по потере способности к растворимости. Например, дублированные образцы хлорсульфополиэти-лен — сополимер бутадиена, стирола и амида метакриловой кислоты, а также хлорсульфополиэтилен — бутадиен-нитрильный[14, С.29]

Если учесть, что толщина полимерных прослоек между частицами наполнителя намного превышает длину макромолекулы, то можно считать, что для наполненного полимера должно сохраняться гауссово распределение расстояний между концами макромолекул. Температурная зависимость времен релаксации в таких системах может быть описана уравнением Вильямса — Лэндела — Ферри (ВЛФ). Поэтому для дальнейшего анализа результатов эксперимента были применены уравнение ВЛФ и концепция свободного объема.[13, С.167]

Сравнительно небольшое увеличение среднего расстояния между частицами наполнителя в смеси может привести к значительному снижению электропроводности. С ростом температуры в смесителе (по мере приближения к концу цикла смешения) объем каучуковой фазы в смеси увеличивается больше, чем объем агрегатов технического углерода, вследствие их более низкого коэффициента термического расширения, что приводит к снижению электропроводности.[7, С.167]

Из рис. IV. 14 видно, что фактор сдвига ат в полимере с крупными частицами наполнителя практически одинаков при большой и малой концентрации наполнителя. Для мелкозернистого наполнителя зависимость lg ат = f(T — Ts) круче и лежит ниже. Это свидетельствует о том, что граничные слои принимают участие а процессе деформации и их свойства отличаются от свойств более удаленных слоев. '- -[13, С.168]

Многие мягчители оказывают специфическое действие, например, жирные кислоты повышают активность ускорителей вулканизации, облегчают диспергирование наполнителей и увеличивают связь между частицами наполнителя и каучуком; воск, парафин, церезин, петролятум повышают сопротивление старению; рубракс, парафин уменьшают набухание резины в воде; канифоль, сосновая смола повышают клейкость резиновых смесей на основе синтетических каучуков; вазелиновое и трансформаторное масла понижают температуру хрупкости резины, т. е. повышают ее морозостойкость; фактисы и полимеризованные непредельные[3, С.179]

Таким образом, сущность современной физической теории усиления каучука состоит в том, что основными факторами, приводящими к повышению прочности, являются: 1) наличие сил связи (сил адсорбции и адгезии), возникающих между каучуком и наполнителем; 2) образование непрерывной цепочечно-сетчатой структуры наполнителя вследствие сил взаимодействия между частицами наполнителя.[3, С.174]

Сорбционная способность наполнителя. Согласно взглядам академика П. А. Ребиндера активность наполнителя определяется сорбционной способностью и молекулярной природой наполнителя. При наличии у наполнителя сорбционной способности молекулы каучука определенным образом ориентируются относительно поверхности частиц наполнителя, образуя сольватные пленки. Пленки каучука, связанные адсорбционными силами с частицами наполнителя, обладают более высокой прочностью, чем остальной, так называемый объемный, каучук. Рентгенографические исследования вулканизата, наполненного газовой канальной сажей, при растяжении подтверждают наличие вблизи поверхности частиц наполнителя каучука, находящегося в особом ориентированном состоянии.[3, С.172]

Согласно представлениям А. Н. Александрова и Ю. С. Ла-зуркина, повышение прочности каучука при применении наполнителей объясняется выравниванием напряжения в пространственной сетке вулканизата в результате десорбции молекул, образующих пространственную сетку. Авторы исходят из того, что пространственная сетка в эластичном полимере построена не регулярно, вследствие чего при растяжении в ней возникают перенапряжения, приводящие к разрыву молекул, в то время как в других частях сетки напряжение очень слабое. При наличии адсорбционных связей частиц наполнителя с молекулами каучука, связанными в пространственную сетку, когда перенапряжение достигает величины сил адсорбции, происходит десорбция молекул каучука, приводящая к понижению напряжения в данном участке сетки. Слабонапряженные участки сетки адсорбируются при этом частицами наполнителя, напряжение выравнивается и равномернее распределяется между частями пространственной сетки, что приводит к повышению прочности18.[3, С.173]

Структура и релаксационные свойства резин — саженаполнен-ных вулканизатов каучуков — еще сложнее. Деформационные свойства саженаполненных резин могут быть описаны моделью, в которой каучуковая часть резины состоит из двух составляющих: мягкой и твердой (см. гл. I). Мягкая составляющая по структуре идентична ненаполненному сшитому каучуку, структура которого рассматривается как состоящая из упорядоченной и неупорядоченной частей. Первая представляет собой совокупность элементов надмолекулярной структуры — упорядоченных микроблоков, связанных в единую пространственную структуру с неупорядоченной частью и состоящих из свободных полимерных цепей и сегментов. Вторая представляет собой объем связанного, т. е. адсорбированного на частицах наполнителя, слоя каучука. Этот адсорбированный слой каучука менее эластичен, чем каучук в мягкой составляющей. В целом сажекаучуковая часть резины состоит из частиц наполнителя, образующих макросетчатую пространственную структуру, и твердой составляющей каучука, связанной с частицами наполнителя. Подвижности сегментов, находящихся в адсорбированном слое каучука, соответствует на рис. П. 14 а'-процесс. В ненаполненной резине а'-процесс не наблюдается. Более медленные процессы релаксации ф и б объясняются подвижностью самих частиц сажи и химических узлов сетки резины.[1, С.100]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
12. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
13. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
14. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
15. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
16. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
21. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
22. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
23. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
24. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную