На главную

Статья по теме: Амплитуда деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Выпускаемые в настоящее время виброреометры классифицируют: по режиму деформирования образца (задается амплитуда деформации или амплитуда напряжения); по частоте (низкочастотные — до 10 цикл/мин, средне- и высокочастотные — до 102 — 103 цикл/мин); по характеру «динамической жесткости», регистрируемой на диаграмме (комплексный динамический модуль (3*, его действительная G' или мнимая G" части), (см. гл. 1).[7, С.206]

На рис. V. 13 показана зависимость амплитуды деформации от температуры при различных частотах (или периодах) действия силы. Из рисунка следует, что при низких температурах (в области стеклообразного состояния) амплитуда деформации очень мала и практически не зависит от частоты действия силы. В области стеклообразного состояния время релаксации намного больше времени деформации, поэтому практически сколь угодно длительный промежуток времени оказывается недостаточным для перегруппировки звеньев макромолекул. С повышением температуры время релаксации уменьшается, так как вследствие увеличения интенсивности теплового движения звеньев их перегруппировки происходят чаще. При высоких температурах в области высокоэластического состояния время релаксации звеньев очень мало и в образце практически при любом значении времени действия силы высокоэластическая деформация успевает развиться до значений, близких к равновесному. Поэтому в этой области температур амплитуда деформации также практически не зависит от частоты действия силы.[4, С.150]

Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Тм. с определяется как температура, которой соответствует максимум механических потерь*. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет на Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникают качественно новые явления (вынужденно-эластические деформации и разрушение). Закономерности, аналогичные представленным на рис. 11.11 и 11.12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные[2, С.97]

Различие между Тс и Тм отчетливо проявляется на температурной зависимости динамического модуля Юнга (рис. 2.6). Ниже Т0 полимер находится в стеклообразном состоянии и температурная зависимость lg? слабо выражена, как и у любого твердого тела. Выше Тс наблюдается более резкая зависимость логарифма модуля упругости от температуры в связи с тем, что в структурно-жидком состоянии структура полимера непрерывно изменяется с температурой. При дальнейшем увеличении температуры в области, где время релаксации снижается до величин, сравнимых с периодом колебаний, в полимерах проявляется высокоэластическая деформация. Амплитуда деформации полимера с увеличением температуры возрастает до тех пор, пока не достигнет предельного значения, а модуль — весьма низкого значения (например, для полимеров модуль одноосного сжатия в стеклообразном состоянии Е0 примерно в 103—104 раз больше, чем соответствующий модуль в высокоэластическом состоянии).[3, С.43]

Однако для каждого полимера существует такой интервал температур, в котором время релаксации и время развития деформации соизмеримы. В этой промежуточной области температур (переходная область из стеклообразного в высокоэластическое состояние) наблюдается резкая зависимость амплитуды деформации от частоты действия силы. Если время действия силы больше времени релаксации т, деформация успевает развиться. Если время действия силы меньше времени релаксации т, высокоэластическая деформация не успевает развиться. Так, если при некоторой температуре и частоте действия силы юз в материале развивается деформация, близкая к равновесной, то при этой же температуре и частоте действия силы ом (рис. V. 13), амплитуда деформации может быть очень мала и материал ведет себя как стеклообразное тело.[4, С.150]

Температуры структурного стеклования Т0 и механического стеклования Гм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость IgE от температуры для полимера приведена на рис. II. 11. Ниже Тс полимер находится в стеклообразном состоянии и температурная зависимость lg? слабо выражена, как и у любого твердого тела вообще. Выше Тс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного сжатия в стеклообразном состоянии ?0 примерно в 103—104 раз больше, чем 'соответствующий модуль Ех в высокоэластическом состоянии.[2, С.96]

Описанные процессы молекулярного деформирования влияют на макроскопическое разрушение полимера. Относительная амплитуда деформации полностью определяет:[1, С.43]

Очевидно, что изменение D может происходить не только с изменением t (или со), но и с изменением т при постоянном t. Изменения т можно достичь, меняя температуру. На рис. 9.15 показано, как меняются G', tg6 и амплитуда деформации ео при изменении частоты со и температуры Т. Практически часто удобнее характеризовать гистерезисные потери не величиной G", а тангенсом угла потерь (9.28). Зависимость tg6 от Т или со также выражается кривой с максимумом. Положение максимума близко к точке, где D — 1.[5, С.134]

Зависимости типа приведенных на рис. 9.15 можно объединить и построить, например график зависимости амплитуды деформации от температуры при разных частотах или от частоты при разных температурах. Такие графики, на которых отображается зависимость свойств и от температуры, и от частоты, приведены на рис. 9.16. Рассмотрим изменение амплитуды деформации от температуры при разных частотах. С повышением температуры образец при достижении Тс начинает размягчаться и амплитуда деформации при заданной частоте <а\ возрастает. При дальнейшем росте температуры наблюдается переход в область развитого высокоэластического состояния и амплитуда деформации практически не меняется, как мы уже наблюдали при снятии термомеханической кривой в условиях статического нагружения (см. гл. 7). Для полимеров особенно характерна относительность понятия «размягчение» полимера. В самом деле, при частоте действия силы оц полимер размягчается при температуре Тк. Если увеличить частоту действия силы, то при температуре Тс полимер не успевает реагировать на эту возросшую частоту: флуктуационная сетка не успевает перегруппироваться и деформация оказывается незначительной. Потребуется нагревание до более высокой температуры, чтобы обеспечить большую подвижность сегментов макромолекул. При этой более высокой температуре флуктуационная сетка сможет перестраиваться при большей частоте действия силы и развивать значительные деформации. Рост частоты действия силы приводит к росту температуры, при которой в полимере начинают развиваться большие деформации, т. е. к росту температуры стеклования.[5, С.135]

В высокоэластическом состоянии амплитуда деформации остается постоянной вплоть до температуры начала вязкого течения и, так же как при однократном приложении нагрузки, представляет собой сумму д упругой и высокоэластической деформации. Если температура выше Гтек, то добавляется еще необратимая деформация.[8, С.391]

В установке, изображенной на рис. 1.17, пружина 4 подобрана так, чтобы удовлетворялось условие Д/„ = /0 + А/, где Д/„ — первоначальная амплитуда деформации пружины, /0 — исходная длина рабочей части образца, А/ — удлинение образца при разрыве. Это условие вытекает из требования постоянства напряжения Of/Of, = 1 и следует из уравнения, определяющего значение напряжения при разрыве образца:[11, С.42]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
7. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
10. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
13. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
14. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
15. Виноградов Г.В. Реология полимеров, 1977, 440 с.
16. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
17. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную