На главную

Статья по теме: Структурного стеклования

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Видов структурного стеклования несколько, но термин «структурное стеклование» применяют лишь в двух случаях: когда причиной стеклования является понижение температуры (это показано на рис. II. 2) или повышение давления. Постепенное понижение температуры или повышение давления сопровождается, разумеется, изменением структуры, в первую очередь — уменьшением свободного объема системы. Одновременно постепенно увеличивается межмолекулярное взаимодействие (по экспоненциальному закону возрастает плотность энергии когезии) и затормаживается вращение звеньев вокруг валентных связей. По достижении некоторой температуры или давления без изменения структуры при температуре или давлении перехода (в отличие от фазовых переходов) сегментальное движение полностью выключается, и система утрачивает все моды теплового движения, связанные с проявле-'ниями высокоэластичности.[1, С.81]

Для теории структурного стеклования фундаментальным понятием является скорость молекулярных перегруппировок, т. е. молекулярные релаксационные процессы, определяющие быстроту перестройки структуры в жидкостях или системах с жидкой структурой, к которым относятся незакристаллизованные полимеры или расплавы полимеров. Квазинезависимыми структурными единицами, участвующими в перегруппировках, являются кинетические[1, С.83]

Для теории структурного стеклования фундаментальным понятием является скорость молекулярных перегруппировок, которая характеризует релаксационные процессы, определяющие быстроту перестройки структуры в жидкостях или системах с жидкой структурой [6]. Квазинезависимыми структурными единицами, участвующими в перегруппировках, являются кинетические единицы (атомы и молекулы в низкомолекулярных и сегменты цепей в высокомолекулярных соединениях).[2, С.36]

Температуры структурного стеклования Т0 и механического стеклования Гм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость IgE от температуры для полимера приведена на рис. II. 11. Ниже Тс полимер находится в стеклообразном состоянии и температурная зависимость lg? слабо выражена, как и у любого твердого тела вообще. Выше Тс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного сжатия в стеклообразном состоянии ?0 примерно в 103—104 раз больше, чем 'соответствующий модуль Ех в высокоэластическом состоянии.[1, С.96]

Ниже температуры структурного стеклования Тс тепловое движение сегментов заморожено, и вещество является твердым. При температуре Тс в стандартных условиях охлаждения (3 К/мин) в отсутствие внешних сил тр~103 с. Для сегментов гибкоцепных полимеров более точное значение То = 5-10~12 с, поэтому энергия активации при Гс составляет t/c«33 &ГС. При расчете энергии активации на моль кинетических единиц надо k умножить на число Авогадро Л^д = 6,02- 102а моль"1, поэтому С/С~276ГС Дж/(моль-К), что совпадает с формулой автора и Лукьянова Uc~cTc [3.32].[12, С.50]

Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура полимера непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц (сегментов), приводящих к изменению ближнего и дальнего флуктуационного порядка, т. е. надмолекулярной организации аморфного полимера. Скорость перегруппировок с понижением температуры умень'шается, вследствие чего при некоторой температуре, называемой температурой стеклования Тс, структура полимера фиксируется. Отсюда следует, что в данном образце застеклованного полимера структура примерно та же, что у незастеклованного полимера в области стеклования.[1, С.83]

Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура жидкости непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц, приводящих к изменению ближнего порядка, степени микрорасслоения и других структурных особенностей жидкости. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего в области некоторой температуры стеклования Тс равновесие в ближнем порядке практически уже не успевает устанавливаться и структура жидкости фиксируется *. Отсюда следует, что в данном стекле структура примерно такая же, как у его расплава при температуре стеклования. Жидкость можно застекловать не только путем понижения температуры, но и повышением давления. Стеклование может происходить при некотором давлении рс из-за уменьшения подвижности частиц вследствие возрастания межмолекулярного взаимодействия и уменьшения свободного объема.[2, С.36]

Приведенные выше рассуждения соответствуют релак|;ацион-ной теории структурного стеклования, впервые предложенной Кобеко [39, с. 176]. Эта теория учитывает, однако, изменение структуры жидкости только в пределах ближнего порядка и поэтому не объясняет всех особенностей процессов стеклования в полимерах. Например, в полимерах выше Тс с изменением темпе* ратуры, кроме изменения структуры на уровне ближнего-порядка, идут процессы структурообразования, например процессы формирования флуктуационных надмолекулярных структур, процессы обратимого и необратимого структурирования и т. д. Это приводит к более сильной температурной зависимости физических свойств в области стеклования.[1, С.85]

Кинетическая теория дает результаты, вполне удовлетворительно согласующиеся с экспериментальными данными изучения структурного стеклования полимеров. В первом приближении каждая кинетическая единица (сегмент) может принимать два энергетических состояния — основное и возбужденное (рис. 2.3) —и характеризоваться одним временем релаксации т (вместо совокупности[2, С.40]

Дальнейшее сужение линии ЯМР-поглощения при более высоких температурах объясняется переходом полимеров в высокоэластическое состряние. Для сравнения на рис. VIII. 2, а приведены значения температуры структурного стеклования Тс. Хорошо видно, что Т,с лежит ниже температуры Т', при которой происходит резкое сужение линии ЯМР. Это расхождение может быть объяснено тем, что эффективное сужение происходит, когда время корреляции тк становится по порядку величины равным (у8Н^)~1. Из данных рис. VIII. 2, а следует, что это значение примерно равно \0~5с. Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 град/мин показывает, что Тс нельзя[1, С.272]

Как отмечалось в § 4 гл. I, структура некристаллических полимеров (а тем более полимеров с активным наполнителем) состоит из нескольких структурных подсистем, в которых подвижность сегментов различна. В результате кроме основного процесса структурного стеклования наблюдается несколько побочных процессов стеклования. Например, структуру эластомеров в первом приближении можно представить как состоящую из двух частей, причем одна часть состоит из свободных сегментов, тепловое движение которых квазинезависимо, а другая представляет собой распределенную по 'всему объему молекулярно-упорядоченную[1, С.99]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
13. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
17. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
18. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную