На главную

Статья по теме: Относительному удлинению

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По прочностным свойствам, относительному удлинению полиуретаны, полученные из фракции и из равновесных полиэфиров, практически не отличаются друг от друга. Однако следует отметить, что полиуретаны на основе смеси полиэфиров с циклическим димером характеризуются пониженной твердостью по ТМ-2, несколько более низкой температурой стеклования и более высоким относительным удлинением.[23, С.52]

Благодаря особенностям макростроения полимерных цепей резины из «литиевого» полиизопрена превосходят резины из НК по относительному удлинению, не уступают, а в сажевых смесях и превосходят последние по эластичности и стойкости к тепловому старению. В то же время высокая молекулярная масса и узкое ММР этого полимера создают определенные трудности в технологии его переработки.[1, С.206]

Индекс теплостойкости, рассчитанный по жесткости при изгибе, лучше коррелирует с результатами испытаний на долговечность, чем обычно используемая величина коэффициента теплостойкости, рассчитанная по относительному удлинению при разрыве, и является чувствительным методом для определения эластических свойств изделий при старении.[5, С.422]

Полимеры, содержащие эквимольные доли различных пластификаторов, имеют разные физико-механические характеристики [292, 295], а содержащие одинаковые массовые количества пластификатора различаются по прочностным свойствам, относительному удлинению и температурной зависимости модуля упругости [288, 292, 294, 295].[6, С.173]

На основе приведенных рецептов стандартных смесей СК(М)С получают резины, которые по физико-механическим показателям аналогичны резинам, выпускаемым за рубежом. Если сравнивать вулканизаты (резины) на основе СК(М)С и НК, то первые значительно уступают по прочности при растяжении, относительному удлинению и сопротивлению раздиру при повышенных температурах (100°С), эластичности. Вулка1-низаты СК(М)С характеризуются более высокими механическими потерями и теплообразованием по сравнению с вулкани-затамн из НК и уступают им по сопротивлениям многократным деформациям изгиба, растяжения, разрастанию трещин и текучести. Однако по показателям диэлектрических свойств, по водостойкости и газонепроницаемости резины на основе СК(М)С равноценны резинам на основе НК. Они также стойки к действию крепких кислот и щелочей, спиртов и эфиров. 236[7, С.236]

В настоящее время установлено, что под регенерирующим действием мягчителей следует понимать совокупность их пласти-цирующего действия с влиянием на предел прочности при растяжении регенерата после его вулканизации. Установлено, что хороший регенерат по пластичности, пределу прочности при растяжении и относительному удлинению можно получить только при применении мягчителя, сочетающего в себе следующие качества: 1) непредельность; 2) преобладающее содержание циклических соединений и 3) содержание достаточного количества полярных групп.[2, С.371]

Тройной сополимер дивинила, стирола и 2-метил-5-винилпи-ридина, например каучук СКС-25МВП-5 (цифры указывают на содержание в исходной смеси мономеров стирола и метилвинил-пирндина), сообщает резинам в 1,5 раза более высокую износостойкость по сравнению с дивинил-стирольными каучуками. Стандартные вулканизаты СКС-25ДВП-5 по пределу прочности при растяжении и относительному удлинению при нормальной и повышенной температурах, а также по эластичности равноценны вулканизатам дивинил-стирольного каучука, но превосходят их по сопротивлению разрастанию пореза при многократном изгибе и по морозостойкости.[2, С.107]

Перейдем теперь к рассмотрению молекулярного механизма ориентации. Зависимость напряжения от деформации для полиморфных полимеров с линейными макромолекулами имеет характерный вид, резко отличный от аналогичной зависимости для сшитого каучука. Если приложить к образцу кристаллического полимера одноосно растягивающее напряжение, то обнаружится, что процесс растяжения до разрыва образца может быть четко разделен на три стадии [80—82]. На первой стадии деформация подчиняется закону Гука, т. е. напряжение прямо пропорционально деформации (относительному удлинению). Вторая стадия характеризуется постоянством напряжения при непрерывно нарастающем удлинении. На этой стадии растяжения в образце появляется так называемая «шейка» и происходит дальнейшее постепенное сужение образца до поперечного сечения шейки. Предполагают, что при этом происходит процесс частичного разрушения первоначальной структуры и переориентации полимерных кристаллов в направлении приложенных усилий. Третья стадия растяжения (так называемая область упрочнения) состоит в удлинении переориентированного образца вплоть до разрыва, ничем не отличающемся от растяжения анизотропного кристаллического полимера в направлении первичного растяжения.[3, С.79]

Различие в -стойкости резин к тепловому старению /проявляется в основном три температурах выше 100 °С. Это различие состоит з том, что реаина «а основе полихлоропрена теряет свои эластические .свойства значительно быстрее, чем резина на основе ХПЭЭ. При 110°С резина на основе наирита КР-50 становится ломкой и непригодной для испытаний через 30 сут, а три 120°С— через 15 сут, тогда как резина на основе ХПЭЭ сохраняет эластичность при этих температурах более чем 90 сут. Старение резин таких типов сопровождается значительным увеличением прочности, которое особенно заметно в случае резины на основе ХПЭЭ. Последняя характеризуется также большей работоспособностью при повышенных температурах. Сопоставление коэффициентов теплостойкости по прочности при растяжении Ki и относительному удлинению Kz показывает, что в случае ХПЭЭ уменьшение коэффициентов К\ и Кч с увеличением температуры испытаний происходит значительно медленнее. Если при 100 °С для резины на основе наирита КР-50 /Ci=Q,15, а #2=0,20, то для резины на основе ХПЭЭ эти коэффициенты составляют соответственно 0,32 и 0,60.[9, С.123]

Коэсрфициент теплового старения (100° С х 72 ч.) по относительному удлинению 0,85 0,83 0,83 0,84 0,81 0,80 0,73[10, С.148]

Показателями стойкости резин к тепловому старению являются коэффициенты по условной прочности, относительному удлинению-при разрыве, сопротивлению раздиру, твердости, сопротивлению истиранию и др.[8, С.180]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Белозеров Н.В. Технология резины, 1967, 660 с.
3. Амброж И.N. Полипропилен, 1967, 317 с.
4. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
7. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
8. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
9. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
10. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
11. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
12. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
13. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
16. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
17. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
18. Виноградов Г.В. Реология полимеров, 1977, 440 с.
19. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
20. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
21. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
22. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
23. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную