На главную

Статья по теме: Линейными макромолекулами

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Вопрос. В процессе свободнорадикальной полимеризации наряду с линейными макромолекулами образуются разветвленные. Напишите вероятную схему образования таких разветвлений при полимеризации винилацетата в присутствии пероксида бензоила.[2, С.222]

Межмолекулярный процесс этерификации сопровождается образованием поперечных связей между линейными макромолекулами, в результате чего полимер утрачивает растворимость:[3, С.307]

Перейдем теперь к рассмотрению молекулярного механизма ориентации. Зависимость напряжения от деформации для полиморфных полимеров с линейными макромолекулами имеет характерный вид, резко отличный от аналогичной зависимости для сшитого каучука. Если приложить к образцу кристаллического полимера одноосно растягивающее напряжение, то обнаружится, что процесс растяжения до разрыва образца может быть четко разделен на три стадии [80—82]. На первой стадии деформация подчиняется закону Гука, т. е. напряжение прямо пропорционально деформации (относительному удлинению). Вторая стадия характеризуется постоянством напряжения при непрерывно нарастающем удлинении. На этой стадии растяжения в образце появляется так называемая «шейка» и происходит дальнейшее постепенное сужение образца до поперечного сечения шейки. Предполагают, что при этом происходит процесс частичного разрушения первоначальной структуры и переориентации полимерных кристаллов в направлении приложенных усилий. Третья стадия растяжения (так называемая область упрочнения) состоит в удлинении переориентированного образца вплоть до разрыва, ничем не отличающемся от растяжения анизотропного кристаллического полимера в направлении первичного растяжения.[5, С.79]

Строение олигомеров зависит от соотношения исходных компонентов и условий реакции. Увеличение количества формальдегида способствует получению прочных полимеров с большим числом поперечных связей между линейными макромолекулами.[1, С.72]

Большой теоретический интерес представляют продукты полимеризации диаллилзамещенного аммония*. Такие полимеры обладают растворимостью и термопластичностью, т. е. сохраняю! свойства, характерные для полимеров с линейными макромолекулами. Образование линейного полимера из диаллилзамещенного аммония представляет собой своеобразный процесс полимеризации: на любой стадии роста цепи внутримолекулярное присоединение чередуется с межмолекулярной полимеризацией. Благодаря такому характеру роста цепи образующаяся макромо-[3, С.394]

Этим условиям удовлетворяют эластомеры, полученные вулканизацией высокомолекулярных натурального и синтетических каучуков Часто высокоэластичностью обладают не только сшитые эластомеры, но и линейные высокомолекулярные полимеры, например невулканизованные каучуки В них тоже образуются пространственные структуры, однако поперечные связи между линейными макромолекулами каучуков непрочны, имеют временный характер являются лабильными, неустойчивыми.[6, С.251]

При поликонденеации или полицрисоединении образовавшиеся макромолекулы могут иметь функциональные группы, которые вновь участвуют в реакции. Однако не все реакции бифункциональных мономеров приводят к получению высокомолекулярных соединений. Так, окись этилена может димеризоваться в диоксан, формальдегид тримеризоваться в триоксан, и при последующих процессах поликонденсации и полиприеоединееия наряду с линейными макромолекулами будут образовываться низкомолекулярные циклические соединения. Таким образом, внутримолекулярная циклизация является побочной реакцией при межмолекулярном соединении; при соответствующих условиях эта реакция может стать основной, например при синтезе многочисленных циклов по принципу разбавления Руггли — Циглера.[7, С.16]

Одновременно с этим наблюдается ступенчатая полимеризация s-капролактама и реакция между линейными макромолекулами с переносом амидной связи.[12, С.97]

Переход от линейных полимеров к сетчатым сопровождается резким увеличением степени полимеризации (в пределе образуется одна гигантская макромолекула). В данном случае в отличие от полимераналогичных превращений макромолекула реагирует как единое целое, сетка образуется независимо от того, какое звено прореагировало, хотя это не безразлично для структуры трехмерного полимера. Достаточно реакции одного звена с одной молекулой сшивающего агента или в отсутствие его возникновения хотя бы одной связи между линейными макромолекулами, чтобы они утратили кинетическую самостоятельность.[8, С.617]

косгь в б-растворителе для монодисперсных полимеров с разветвленными и линейными макромолекулами одинаковой мол массы (для линейных макромолекул gr«l, с увеличением разветвленное™ g' уменьшается).[13, С.158]

косгь в Э-растворителе для монодисперсных; полимеров с разветвленными и линейными макромолекулами одинаковой мол. массы (для линейных макромолекул ?'я1; с увеличением разветвленное'™ g'уменьшается).[11, С.161]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
13. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную