На главную

Статья по теме: Соотношением скоростей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Средний молекулярный вес полимера определяется соотношением скоростей реакций роста и обрыва цепей. Скорость реакции роста пропорциональна концентрации мономера, поэтому его концентрацию необходимо повышать для увеличения среднего молекулярного веса полиэтилена.[2, С.195]

При реакциях передачи цепи плотность разветвления, естественно, определяется соотношением скоростей реакций разветвления и роста, в поликонденсационных процессах — долей полифункциональных звеньев. В связи с тем, что энергия активации реакций разветвления и, соответственно, температурный коэффициент их скорости, выше энергии активации роста цепи, разветвленность большого числа полимеров увеличивается с ростом температуры; разветвленность также увеличивается с глубиной полимеризации, так как при этом возрастает вероятность взаимодействия активных центров с полимерными цепями.[1, С.25]

Чтобы получить привитой сополимер в чистом виде, реакцию следует проводить в таких условиях, при которых гомополимеризация практически не протекает. Соотношение выходов привитого сополимера и гомополимера определяется соотношением скоростей этих реакций. Получение привитого сополимера, практически не содержащего гомополимера, возможно в тех случаях, когда скорость прививки значительно превышает скорость гомополимеризации или гомополимеризация протекает с большим индукционным периодом, достаточным для образования привитого сополимера. К сожалению, большинство методов синтеза привитых сополимеров, применяемых в настоящее время, позволяет получать смесь привитого сополимера и гомополимера или, как в случае механо-химического инициирования, смеси привитых и блок-сополимеров.[3, С.205]

Но скорость обрыва цепи, как это видно из сопоставления уравнений, возрастает больше, чем скорость роста цепи, так как в уравнение для о0бр величина [п] входит в квадрате. Соответственно уменьшается средняя степень полимеризации Р образующегося полимера, определяемая соотношением скоростей этих реакций ар/у°бр-[3, С.78]

Полидисперсность полимеров может быть количественно описана с помощью функции распределения по молекулярным массам, т. е. зависимости относительного числа или весовой доли макромолекул с данной молекулярной массой qw(M) от величины М. Функция распределения макромолекул по молекулярным массам определяется соотношением скоростей элементарных реакций процесса полимеризации (инициирования, роста, обрыва цепей) и особенностями зависимости этих скоростей от длины цепи и условий Процесса.[1, С.21]

При исследовании отверждения полимеров в присутствии наполнителя было также показано [114], что с момента введения наполнителя реакционная система в течение длительного времени остается в неравновесном состоянии с меньшей плотностью. Далее наступает повышение плотности, которое тем больше, чем меньше жесткость молекул и вязкость системы и выше температура. В процессе отверждения возникают различные структурные состояния, определяемые соотношением скоростей отверждения и достижения равновесной плотности. При отверждении может фиксироваться как более рыхлая и неравновесная структура в граничном слое с большим свободным объемом, так и менее сшитая и более плотно упакованная по сравнению с объемом сетка. Это связано с тем, что менее сшитые молекулы в условиях отверждения могут создать на поверхности частиц более плотно упакованный слой. Эти явления объясняют зависимость свойств отвержденной системы при равной степени отверждения от типа и количества наполнителя, а также от условий отверждения.[7, С.61]

В противоположность таким, истинно равновесным системам, образование частиц при дисперсионной полимеризации следует, очевидно, рассматривать как необратимый процесс: однажды образовавшись, частицы термодинамически устойчивы и продолжают расти. Более того, дальнейшая полимеризация, происходящая внутри частиц, понижает их растворимость до такой степени, при которой перенос вещества от одной частицы к другой совершенно невозможен. Число и размеры частиц поэтому определяются соотношением скоростей нескольких конкурирующих процессов и их изменениями в ходе полимеризации. Наиболее важными из них являются: скорость зародышеобразования, т. е. скорость образования ядер новых частиц и та закономерность, которой она связана с числом и размером существующих частиц; присутствие стабилизатора и скорость, с которой новые полимерные цепи инициируются в фазе разбавителя.[10, С.163]

Тюдёш [31] рассмотрел особенности кинетики полимеризации в растворах с точки зрения предложенной им концепции «горячих радикалов». В элементарном акте экзотермической реакции выделяется энергия, равная сумме теплоты реакции и энергии активации. Для реакции роста цепи при полимеризации эта величина составляет 20—25 ккал/молъ. В результате реакции образуется радикал, обладающий избытком энергии,— «горячий радикал». Тюдёш предположил, что существует определенная вероятность для этого радикала вступить в реакцию с мономером без энергии активации. Эта вероятность определяется соотношением скоростей дезактивации колебательного возбуждения и вступления в реакцию с мономером. Скорость дезактивации зависит от типа молекул, окружающих горячий радикал, т. е. от состава реакционной смеси. Эта концепция может быть выражена в количественной форме, если написать уравнения стационарности для холодных и горячих радикалов:[9, С.40]

Можно предположить, что характер изменения плотности упаковки полимера при деформации зависит также от условий, в которых ведется ориентация. Если условия деформации неравновесного полимера благоприятствуют протеканию процессов с большим временем релаксации, то можно ожидать, что в результате вытяжки будет происходить повышение плотности упаковки полимера [50]. В противном случае ориентация вызывает понижение плотности упаковки, несмотря на выпрямление цепей, приводящее к возникновению структурной и механической анизотропии. Таким образом, характер изменения порядка в расположении молекул будет определяться соотношением скоростей деформации и релаксации. Релаксация будет снижать ориентацию сегментов макромолекул [57, 58]. Низкие скорости вытяжки создают более благоприятные условия для протекания процессов с большим временем[4, С.77]

Степень полимеризации п, т. е. средняя молекулярная масса полимера, определяемая соотношением скоростей роста и обры ва цепи, связана с концентрацией инициатора уравнением[5, С.119]

Наличие межмолекулярных водородных связей, в свою очередь, может оказывать влияние на соотношение скоростей реакций (1) и (2). Поскольку состав продуктов окисления, т. е. направление процесса, определяется соотношением скоростей wi/wz, то при разработке способов регулируемого окисления органических веществ необходимо учитывать влияние всех вышеперечисленных факторов. Появляется возможность управления процессом окисления воздействием на элементарные стадии сложной цепной реакции. При этом следует учитывать, что природа и состояние поверхности реакционного сосуда при жидкофазном окислении, так же как и в газофазных реакциях, играет важную роль.[11, С.6]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
7. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
8. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
9. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
10. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
11. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
15. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную