На главную

Статья по теме: Зависимости динамических

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Иногда используются и другие виды зависимости г от Т. Таким образом, подставив r=f(T) в формулы (7.52) — (7.57), можно получить выражения для температурной зависимости динамических вязкоупругих свойств полимеров. Результаты такого рода расчетов по формулам (7.52) — (7.56) для вязкоупругой среды, соответствующей модели стандартного линейного вязкоупругого тела, приведены на рис. 60. Как и следовало ожидать, кривые G'=f(T) и c = f(T) представляют собой зеркальное отображение 'Кривых С' = Дсо) и с = /(со). Если G' и с возрастают с ростом частоты со, стремясь к предельным значениям G'mn Coo, то при повышении температуры G' и с уменьшаются, стремясь к значениям G0 и с0. Так как п. входящее в формулу (7.54), для tg6 больше, чем т в выражении (7.53) для G", то на шкале температур максимум tg6 появляется при более высоких температурах, чем соответствующий пик G". Действительно, пик tg6 появляется при условии кцть пик G" имеет место прг ют=1. При измерениях на одной частоте[3, С.251]

Энергия связи атомов, составляющих основную цепь полимера, а также энергия взаимодействия атомов соседних цепей, т.е. межмолекулярного взаимодействия, оказывают влияние на величину и характер зависимости динамических модулей упругости полимеров и скорости распространения звука в них от частоты или температуры.[1, С.341]

Если .проводить измерения на постоянной частоте в очень широком интервале температур, то можно выявить все свойственные данному полимеру релаксационные процессы, обусловленные различными видами молекулярной подвижности, которые могут быть реализованы в полимере. Проявление каждого нового вида молекулярной подвижности, приводящее к существенным изменениям на температурной зависимости динамических механических свойств, обычно трактуют как температурный переход. Температурные переходы могут определяться по максимумам на температурной зависимости модуля или податливости потерь, tg6, по изменению температурного коэффициента скорости звука [4], по точке перегиба на температурной зависимости динамического модуля упругости.[3, С.260]

Существенно, что после испаренич растворителя вул-канизационная структура восстанавливается, а пленки, полученные из раствора, имеют такие же физико-механические свойства, как и исходные вулканизаты [67]. Вулканизационная структура при этом образуется в результате межмолекулярного взаимодействия полярных солевых групп. Физический характер этого взаимодействия подтверждается тем, что вулканизацию карбоксилатных каучуков можно провести и гидронсидами одновалентных металлов [61; 68]. Соединение групп —COONa и —COOLi в устойчивые при комнатной температуре агрегаты было показано экспериментально при исследовании температурной зависимости динамических свойств вулканизатов [4]. Кроме того, в вулканизационных структурах металлооксидных вулканизатов карбоксилатных каучуков обнаружено большое число слабых связей. Об этом свидетельствует (помимо отмеченной термолабильности) быстрое снижение прочности вулканизатов при повышении температуры, высокая скорость релаксации напряжения, течение вулканизатов под нагрузкой при (растяжении и сжатии, быстрое накопление остаточных деформаций [24, с. 15, 62, 69].[2, С.160]

Рис. 1. Зависимости динамических функций G', G" и ц' от частоты и эффек-. тивной вязкости т] от скорости сдвига для расплава образца полиэтилена низкой плотности LD 103. Пунктир — экстраполяция.[7, С.153]

Рис. 2. Температурные зависимости динамических характеристик (модуля Юнга Е и фактора механических потерь tg б) аморфных полимеров: поливинилхло-рида (ПВХ) и полиметилметакрилата (ПММА).[4, С.563]

На-рис. 1 и 2 приведены температурные зависимости динамических модулей упругости Е' и потерь Е" при НО Гц для шести образцов сополимеров (от А до F). Положение максимума потерь в функции содержания стирола в сополимере .иллюстрирует рис. 3. Экспериментальные точки для всех образцов, включая чистый полибутадиен (15% вини-льных звеньев) и полистирол, для которых значения Гтах составляют ^91 и 108° С, соответственно, хорошо укладываются на прямую линию. Значения температур стеклования[6, С.85]

Для математического описания частотной зависимости динамических свойств необходимы следующие преобразования. Как и в случае релаксации напряжения и ползучести, проще всего начать с моделей Максвелла и Кельвина — Фойхта.[5, С.97]

Различие распределений времен релаксации приводит к разным предсказаниям относительно вида функций G' (со) и G" (со), хотя в обоих случаях, как это видно из формул (3.17), они могут быть представлены в безразмерных переменных. Это существенно облегчает сопоставление результатов эксперимента с теоретическими предсказаниями. На рис. 3.4 показаны частотные зависимости динамических функций для моделей КСР и КРЗ, приведенные к безразмерному виду. Для этого построения зависимости G' (со) и G" (со) в модели КСР рассчитывали по формулам (3.18), а в модели КРЗ аргумент приводился к переменной (со0т) и расчет проводился по формулам[8, С.249]

Результаты измерений температурных зависимостей диэлектрических потерь в" отдельных компонентов и их смесей при частотах 0,1, 1 и 10 кГц приведены на рис. 1—5. Данные для чистого ПС хорошо согласуются с результатами других исследователей и приведены скорее как контрольные. Детальный анализ диэлектрических свойств ПОФ можно найти в работе [6]. В связи с этим ниже рассматриваются главным образом результаты измерений, относящиеся к поведению смесей ПОФ и ПС. На рис. 6 приведены температурные зависимости динамических механических потерь при 110 Гц для трех упомянутых выше смесей. Как в диэлектрических, так ив механических спектрах релаксации четко обнаруживается высокотемпера-[6, С.132]

Заканчивая обсуждения вопроса о физическом смысле величины температуры Т0, укажем, что в аморфных полимерах ниже температуры стеклования различными методами, в частности динамическим методом, обнаруживается существование низкотемпературного перехода, который Р, Бойер * называет переходом из одного стеклообразного состояния в другое. Экспериментально этот переход часто проявляется как граница между вынужденно-эластическим и хрупким состояниями полимера (температура хрупкости). Не исключено, что по своему физическому смыслу этот низкотемпературный переход имеет отношение к характерной температуре Т0, хотя этот вопрос нельзя пока считать выясненным. Согласно ряду литературных данных Tg/Tp «rf 1,15—1,33, где Гр — температура перехода, определяемая по положению максимума потерь на температурной зависимости динамических свойств полимера. Например, для полиэтилена Tg/T0 = 1,25; это значение находится в пределах указанного интервала значений для TgIT$, что свидетельствует в пользу отождествления Т0 и Т$.[8, С.129]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
2. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
3. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
4. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
5. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
6. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
7. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
8. Виноградов Г.В. Реология полимеров, 1977, 440 с.
9. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
10. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную