На главную

Статья по теме: Химического разложения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Спектрометрический вариант дает возможность анализировать образцы после облучения без химического разложения. Кроме того, при снятии у-спектра обнаруживаются радиоизотопы, которые при радиохимическом варианте проведения анализа могут быть пропущены. Спектрометрический вариант применим только тогда, когда само анализируемое вещество - макрокомпонент - активируется слабо и не имеет собственного мешающего у-излучения. Чувствительность спектрометрического определения ниже, чем при радиохимическом определении, на 1-2 порядка.[7, С.160]

Наконец, если некристаллический полимер является макросет-чатым, то он характеризуется термомеханической кривой типа 3. Узлы сетки препятствуют относительному перемещению полимерных цепей. Поэтому при высоких температурах вязкого течения не наступает и полимер «не замечает» температуры текучести Гт. Температурная область высокой эластичности расширяется и ее верхней границей становится граница химического разложения полимера. Такими деформационными свойствами обладают, в частности, макросетчатые полимерные материалы типа резин. Эти материалы необычны по сочетанию ряда свойств. Они способны восстанавливать свою форму после разгрузки, как и упругие твердые тела, но по многим другим свойствам близки к жидкостям и газам. Так, низкомолекулярные жидкости и резины по-структуре— некристаллические тела. Их коэффициенты теплового расширения и сжимаемости близки между собой, но намного больше (на по-рядок-два), чем у твердых тел. Коэффициенты объемного термического расширения равны 3,6-10~3°С~1 для газов, 3 -f- 6-10~5 °С~' для металлов, но для жидкостей и резин они занимают промежуточное положение и практически совпадают между собой или близки (3-4-6-Ю-4 "С-1). Коэффициенты сжимаемости равны Ю~5 Па-1 для воздуха при давлении 9,81-К)-4 Па (1 атм), 10~и Па"1 для металлов, а для жидкостей и резин они близки и на два порядка величины отличаются от металлов (10~9 Па""1). Резины, как и жидкости, подчиняются закону Паскаля.[2, С.70]

Наконец, если некристаллический полимер является сеточным (или пространственно-сшитым) эластомером, то он характеризуется термомеханической кривой типа 2. Узлы пространственной сетки препятствуют относительному перемещению полимерных цепей. Поэтому при высоких температурах вязкое течение не наступает и эластомер «не замечает» температуры Гф.т. Температурная область высокой эластичности расширяется, и ее верхней границей становится граница химического разложения полимера. Такими деформационными свойствами обладают и сеточные полимерные материалы типа резин, которые необычны по сочетанию ряда свойств. Они способны восстанавливать свою форму после разгрузки, как и упругие твердые тела, но по другим свойствам близки к жидкостям и газам. Так, низкомолекулярные жидкости и резины по структуре —некристаллические тела. Их коэффициенты теплового расширения и сжимаемости близки между собой, но намного больше (на один-два порядка), чем у низкомолекулярных твердых тел. Коэффициенты их объемного термического расширения равны 3,6-Ю-3 К""1 для газов, (3-ь5)-10~5 К"1 для металлов, а для жидкостей и резины они имеют промежуточные значения и практически совпадают между собой и близки к (34-6) • 10~4 К"1. Коэффициенты сжимаемости равны 10 МПа-1 для воздуха при давлении 0,1 МПа (1 атм), 10~5 Па"1 для металлов, а для жидкостей и резин они близки и на два десятичных порядка отличаются от металлов (Ю-3 МПа-1).[3, С.33]

Со стеклованием связывается прекращение сегментальной подвижности молекул. Температура стеклования характеризует теплостойкость для аморфных полимеров, работающих в застек-ловапном состоянии, или морозостойкость для полимеров, эксплуатирующихся в высокоэластичном состоянии. Температура стеклования растет при увеличении молекулярной массы до величины Жсегм, характеризующей молекулярную массу механического сегмента макромолекулы, и выше этого значения остается практически постоянной. В отличие от температуры стеклования (Гст) температура текучести с увеличением степени полимеризации возрастает вплоть до температуры химического разложения полимера. Температура хрупкости (Гхр), определяющая нижний температурный интервал эксплуатационной способности конструкционных полимеров, несущих нагрузки, по мере роста молекулярной массы изменяется немонотонно. Варьируя средней молекулярной массой и различным строением чередующихся звеньев молекулярной цепочки, из одного и того же мономера можно получить ряд полимерных веществ с различной молекулярной структурой и обладающих, следовательно, различными физико-механическими свойствами. Реальные, выпускаемые промышленностью, полимеры полидисперсны, т. е. представляют собой смесь полимерго-мологов (макромолекул, составленных из полимерных веществ одного химического строения, по отличающихся молекулярной массой) с определенным молекулярно-массовым распределением. Молекулярная масса полимеров может меняться в очеш; широких пределах, и любой образец полимера представляет собой смесь макромолекул различной длины. Полидисперсность полимеров приводит к тому, что в реальных материалах существует широкий набор (спектр) времен релаксации, включающий по мере перехода от низших полимергомологов к высшим очень быстрые неравновесные процессы, исчисляемые долями секунд, до весьма замедленных, для завершения которых могут потребоваться многие годы. Поэтому полимерные материалы при статическом на-гружении могут находиться в неравновесном состоянии (непрерывно деформироваться) практически неограниченно долгое время. И в то же время эти процессы являются обратимыми.[1, С.49]

Зависимость С/о от температуры в области температур до 500—700 К, т. е. ниже температуры химического разложения полимеров, близка к линейной:[10, С.31]

Так как при растяжении />'0, то и ф(Я,)>0 при всех Я, > 1. Поэтому для всех растяжений (dffdT) р- я, > 0, если Т < YsP ~ 1700 К, т. е. практически всегда, так как граница химического разложения лежит значительно ниже.[8, С.150]

Так как при растяжении р > 0, то и ф(Л)>0 при всех К > 0. Поэтому для всех, растяжений (др/дТ)р,т > 0, если температура Т < 4/зР = 1400 °С, т. е. практически всегда, так как граница химического разложения существующих резин ~200°С.[2, С.119]

Термомеханическая кривая, снятая для этой фракции полимера, указывает на то, что макромолекулы полностью сшились в трехмерную структуру. У этого полимера отсутствует область течения, температура его химического разложения (выше 170° С) ниже температуры текучести. Добавление дивинилового эфира дифенилолпропана к винилфениловому эфиру и совместная полимеризация их приводит к получению полимеров с более высокими температурами плавления, чем это характерно для по-ливинилфенилового эфира. Например, если полимер винилфенилового эфира плавится при 70—100° С, то сополимер его с дивиниловым эфиром дифенилолпропана, взятый в количестве 10 вес. % от винилфенилового эфира, имеет т. пл. 157—170° С. Для сополимеров винилфенилового эфира с 5вес. % дивинилового эфира дифенилолпропана были также сняты термомеханические кривые, показывающие, что у этих сополимеров намечается высокоэластическая область. Сополимер обладает гораздо большей термостойкостью по сравнению с чистым полимером винилфенилового эфира. Вероятно, присутствие дивинилового эфира дифенилолпропана вызывает образование более длинных и разветвленных цепей. Образования трехмерных структур при этом не происходило, так как взятого в сополи-меризацию количества дивинилового эфира было для этого недостаточно. Таким образом, дивиниловый эфир дифенилолпропана выступает как облагораживающий компонент при сополимеризации.[13, С.269]

Определение температур физических переходов в полимерах возможно, например, с помощью термомеханического метода. Этот же метод может использоваться для быстрого определения таких важных характеристик полимерных материалов, как температуры стеклования, кристаллизации, начала химического разложения.[5, С.105]

Этими особенностями строения природной целлюлозы, а также ее высокой молекулярной массой (500—600 тыс.) обусловлена необходимость подвергать ее химической обработке перед дальнейшей переработкой в волокна, пленки и другие материалы. Перевести целлюлозу в вязкотекучее состояние путем нагревания невозможно, так как еще до этого перехода начинается процесс ее химического разложения. Переработка целлюлозы так называемым вискозным методом основана на последовательных полимераналогичных реакциях:[6, С.222]

Этими особенностями строения природной целлюлозы, а также ее высокой молекулярной массой (500—600 тыс.) обусловлена необходимость подвергать ее химической обработке перед дальнейшей переработкой в волокна, пленки и другие материалы. Перевести целлюлозу в вязкотекучее состояние путем нагревания невозможно, так как еще до этого перехода начинается процесс ее химического разложения. Переработка целлюлозы так называемым вискозным методом основана на последовательных полимераналогичных реакциях:[14, С.35]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
13. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную