На главную

Статья по теме: Подвижность полимерных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Возникновение адсорбционных связей макромолекул с поверхностью наполнителя уже в ходе формирования пленки способствует дополнительному структурированию системы и заметно ограничивает подвижность полимерных цепей вблизи поверхности. Связывание макромолекул и молекулярных агрегатов с поверхностью и их ориентация в поверхностном слое сильно затрудняют установление равновесного состояния полимера вблизи поверхности и, следовательно, препятствуют образованию плотно упакованной структуры в таких условиях. Можно полагать, что при повышении концентрации раствора или при снижении температуры уже на поверхности облегчается формирование надмолекулярных структур, которые будут упакованы менее плотно. Действительно, сорбция есть молекулярный процесс, сопровождающийся раздвижением цепей полимера, который должен затрагивать (при достаточной концентрации растворителя в полимере) и надмолекулярные структуры. Если бы плотность упаковки молекул на поверхности была той же, что и в свободных пленках, мы не смогли бы обнаружить заметных изменений в сорбции или набухании. Таким образом, чем больше поверхность наполнителя, тем сильнее ограничивается подвижность цепей уже в ходе формирования поверхностного слоя и тем более рыхлая упаковка молекул в нем.[6, С.20]

Значения К образцов аморфных полимеров, полученных при относительно высоких давлениях, меньше, чем у образцов, полученных при меньших давлениях. Причина этого состоит в следующем. При относительно небольших внешних давлениях по мере увеличения давления сегментальная подвижность в полимерах хотя и уменьшается, однако сохраняется возможность перегруппировки звеньев макромолекул. В случае более высоких давлений свободный объем уменьшается, подвижность полимерных цепей затрудняется и X увеличивается. Поэтому температура стеклования полимера возрастает и за время эксперимента не успевает установиться равновесный свободный объем образца. Это и обусловливает разницу значений К для образцов, полученных при высоких и низких давлениях, если полимер находится в высокоэластическом состоянии. Наложение еще более высоких давлений уже не будет приводить к дальнейшему уменьшению свободного объема, ибо при этом полимер будет находиться в стеклообразном состоянии и не могут проявляться условия, обеспечивающие заметное изменение его свободного объема. Таким образом, повышение давления способствует уменьшению свободного объема полимера, затрудняет подвижность сегментов макромолекул и увеличивает коэффициент А,.[3, С.259]

При понижении температуры уменьшается подвижность полимерных цепей, что приводит к уменьшению эластичности каучуков и резин. На практике сохранение эластических свойств резин характеризуют коэффициентом морозостойкости /См[1, С.91]

Эффекты разрыхления упаковки в граничных слоях мы объясняем следующим образом. Возникновение адсорбционных связей с поверхностью в ходе формирования полимерного материала, способствуя дополнительному структурированию системы, заметно ограничивает подвижность полимерных цепей вблизи поверхности, что приводит к изменению условий протекания релаксационных процессов и замедлению установления равновесного состояния полимера вблизи поверхности, а следовательно, делает невозможным появление плотноупакованной структуры в таких условиях. Влияние условий протекания релаксационных процессов на плотность упаковки полимеров показано в работе [233].[5, С.163]

При переработке полимерных расплавов предполагается, что при высокой температуре переработки не происходит их заметного разложения. Полимеры, растворы которых трудно перерабатывать из-за высокой вязкости или вследствие разложения при температуре плавления, можно перевести в вязкотекучее состояние пластификацией и перерабатывать при более низкой температуре. В качестве пластификаторов применяют высококипящие жидкости, совмещающиеся с полимерами, например эфиры фосфорной и фталевой кислот (диоктилфталат), различные алифатические дикарбоновые кислоты. Молекулы пластификатора располагаются между полимерами цепочками, что приводит к уменьшению межмолекулярного взаимодействия (внешняя пластификация)*. При этом подвижность полимерных цепочек возрастает, а температура стеклования понижается. Пластифицированные полимеры являются более гибкими и обладают меньшей твердостью по сравнению с непластифицированными (см. опыт 3-48).[4, С.104]

НА МОЛЕКУЛЯРНУЮ ПОДВИЖНОСТЬ ПОЛИМЕРНЫХ ЦЕПЕЙ В ГРАНИЧНЫХ СЛОЯХ[5, С.156]

Твердая поверхность, ограничивая подвижность полимерных цепей, сказывается на кинетике сшивания макромолекул. Это видно из рис. 1.28: медленнее отверждаются наполненные образцы (т. е. температурные смещения tg 8 соответственно больше) . Это подтверждается также и частотными зависимостями tg6.[6, С.61]

Молекулярный механизм развития вынужденно-эластической деформации кристаллических полимеров принципиально отличается от рассмотренного выше. В данном случае подвижность полимерных молекул ограничивается наличием кристаллических областей. Следовательно, любое изменение конформации полимерной цепи влечет за собой изменение кристаллической структуры, реализуемое посредством рекристаллизации; поэтому напряжение, соответствующее пределу текучести, иногда называют напряжением рекристаллизации. Действие механических напряжений по-разному изменяет температуру плавления различных элементов структуры. Для благоприятно ориентированных элементов температура плавления повышается и, следовательно, возрастает их стабильность. Напротив, температура плавления элементов с неблагоприятной ориентацией может существенно снизиться; поэтому в процессе деформации эти структурные элементы плавятся и потом вновь кристаллизуются в виде более устойчивых структурных форм.[7, С.29]

Температурно-временные условия вытяжки также должны влиять на фактор ориентации аморфных областей полимера, так как с повышением температуры уменьшается межмолекулярное взаимодействие и растет подвижность полимерных цепей. На рис. 111.27,6 приведены зависимости фактора ориентации аморфных областей fa от степени вытяжки для ПЭНД. Видно, что при более высоких Тъ значения /а Для обоих полимеров во всем диапазоне удлинения меньше, чем при низких Тв. В соответствии с этим убывание числа свернутых гош-изомеров при высокотемпературной вытяжке начинаются с более высоких значений К [82]. Кроме того, при ориентировании в таких условиях меньше рвутся молекулярные цепи [82]. Повышение Тв позволяет достичь больших значений удлинений [103].[10, С.226]

Как органические, так и неорганические волокнообразующие материалы в виде моноволокна, пучка или ровницы легко могут быть покрыты дисперсиями соответствующих полимеров в органических жидкостях. Покрытие можно наносить как погружением, так и распылением. Подвижность полимерных дисперсий обеспечивает их равномерное и эффективное проникновение между волокнами нити и хорошее заполнение пустот.[9, С.309]

Переход из стеклообразного состояния в высокоэластическое, вызванный повышением температуры, т. е. при 7>7С, сопровождается увеличением подвижности сегментов и уменьшением межмолекулярного взаимодействия, в результате чего молекулы под действием напряжения могут изменять свою конформацию. В этих условиях под действием внешнего напряжения в полимерных материалах могут происходить значительные обратимые деформации (более тысячи процентов). Высокая подвижность полимерных це-[12, С.230]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
5. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
8. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
9. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
10. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
11. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
12. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную