На главную

Статья по теме: Пониженной молекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

К реакциям, ухудшающим свойства полимеров, относятся прежде всего реакции, связанные с распадом молекулярных цепей, приводящие к образованию продуктов со значительно пониженной молекулярной массой или низкомолекулярных веществ. Эти реакции деструкции протекают в полимерах под воздействием теплоты, света, излучения высоких энергий, кислорода, озона, механических напряжений и др.[1, С.238]

При набухании небольших образцов невулканизованных полимеров в течение длительного времени (по крайней мере, 12 часов) в хорошем растворителе весь технический углерод остается в саже-каучуковом геле, а вся растворимая часть полимера (обычно фракция с пониженной молекулярной массой) удаляется. Поэтому относительное содержание полимера в геле отражает распределение наполнителя в полимерной смеси. При сочетании этого метода с ТГА и ТЭМ в процессе исследования смесей изобутилен-изопренового каучука, даже в случае его предварительного смешения с ТУ (N347), с НК или[4, С.580]

Выше (тл. II) были рассмотрены химические реакции, позволяющие широко изменять, или модифицировать, свойства полимеров. Одновременно было отмечено, что целый ряд химических реакций приводит к ухудшению свойств полимеров. Сюда относятся, прежде всего, реакции, связанные с распадом молекулярных цепей, приводящие к образованию продуктов со значительно пониженной молекулярной массой или низкомолекулярных веществ. Эти реакции называются реакциями деструкции. Они протекают в полимерах под воздействием тепла, света, излучений высоких энергий, кислорода, озона, механических напряжений и др.[8, С.177]

Выше (гл. II) были рассмотрены химические реакции, позволяющие широко изменять, или модифицировать, свойства полимеров. Одновременно было отмечено, что целый ряд химических реакций приводит к ухудшению свойств полимеров. Сюда относятся, прежде всего, реакции, связанные с распадом молекулярных цепей, приводящие к образованию продуктов со значительно пониженной молекулярной массой или кизкомолекулярньтх веществ. Эти реакции называются реакциями деструкции. Они протекают в полимерах под воздействием тепла, света, излучений высоких энергий., кислорода, озона, механических напряжений и др.[9, С.177]

Между исходным состоянием полимеризации и деструкцией полимера существует непосредственная связь, например, при термической деструкции полимеров, имеющих низкое значение теплот полимеризации, образуется в основном мономер, т.е. имеет место процесс деполимеризации, если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, и процесс приводит к образованию устойчивых макромолекул пониженной молекулярной массы. Для замедления реакции деполимеризации применяют метод сополимеризации с мономером, склонным к реакции передачи цепи при деструкции. Так, сополимер метилметакрилата с акрило-питрилом (небольшое количество) менее склонен к реакции деполимеризации, чем по-[5, С.107]

Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений: при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер; если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 15.1).[1, С.231]

Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений: при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном .мономер; если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 8).[8, С.181]

Натуральный каучук, успешно использованный некоторыми исследователями в первых работах по дисперсионной полимеризации в углеводородах [51—54 ], содержит большое число реакцион-носпособных группировок, отрыв водорода от которых создает центры прививки. Обзор некоторых работ по прививке полимеров на натуральный каучук, как в латексе, так и в массе, приведен в [55]. В этих системах прививка часто происходит в нескольких местах одной и той же молекулы каучука, что приводит к гелеоб-разованию либо к загущению дисперсии вследствие многофункциональности привитых молекул, сшивающих образующиеся частицы полимера. Чтобы уменьшить эти нежелательные побочные эффекты, необходимо использовать деструктурированный натуральный каучук, который из-за пониженной молекулярной массы обладает более низкой потенциальной функциональностью.[7, С.96]

Тепловое воздействие является одним из наиболее часто встречающихся эксплуатационных условий работы полимерных изделий, поэтому изучение закономерностей изменения структуры и свойств полимеров под тепловым воздействием имеет очень большое значение. Здесь мы рассмотрим действие чисто теплового фактора без участия кислорода, так как объединенное действие обоих факторов логичнее рассматривать при описании окисления полимеров. Тепловым воздействиям подвергаются, например, изделия из полимеров, используемые для работы при высокой температуре в различных аппаратах, где нет доступа кислорода. В зависимости от химического строения молекул в полимерах могут происходить разные изменения. Так, одни полимеры полностью деполимери-зуются, т. е. разлагаются до мономера; в других при длительном нагревании происходит случайный разрыв связей и образование устойчивых молекул пониженной молекулярной массы, а иногда отщепление низкомолекулярных продуктов за счет реакций боковых групп без существенного изменения исходной молекулярной массы. Такие воздействия приводят также к беспорядочному сшиванию макромолекул и образованию разветвленных и сшитых структур. Скорости как радикальной полимеризации, так и деполимеризации возрастают с температурой. Существует предельная температура, при которой скорости полимеризации и деполимеризации становятся равными. Это можно установить, например, из измерения вязкости растворов полистирола при полимеризации стирола и тепловой обработке полистирола. В какой-то момент значения вязкостей выравниваются, что говорит об одинаковой молекулярной массе продуктов полимеризации и деструкции (рис. 107).[8, С.181]

УСТОЙЧИВЫХ МОЛекул пониженной молекулярной массы, а иногда отщепление низкомолекулярных продуктов за счет реакций боко-[9, С.181]

Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений: при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер; если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 8).[9, С.181]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
7. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную