На главную

Статья по теме: Сегментальную подвижность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Измеряя времена релаксации Т, и Т2 протонов, можно исследовать влияние старения под действием ионизирующего облучения на сегментальную подвижность в макромолекулах полимеров [23].[7, С.273]

Полимеры характеризуются весьма широким набором кинетических единиц, обеспечивающих широкий спектр локальных движений отдельных атомных групп в основной и боковой цепи, сегментальную подвижность, движение макромолекулы как целого, подвижность надмолекулярных структурных образований. Наличие узлов сетки существенно изменяет сам характер проявления тех или иных движений в сетчатых полимерах. Можно отметить следующие особенности проявления релаксационных процессов в сетчатых полимерах.[11, С.198]

Рис. 1.17. Схематическое изображение элементов структуры полимерной цепи (карбоцепной полимер), участвующих в мелкомасштабных движениях (Y'-, Y-, Р-процессах) и проявляющих сегментальную подвижность (а-процесс).[4, С.58]

Естественно, что для стабилизации механических свойств этих волокон, а также для повышения их устойчивости к водно-тепловым обработкам в процессе формования необходимо было вводить операцию "сшивания" полимерных цепей, ограничивающую сегментальную подвижность макромолекул.[2, С.336]

В случае органических веществ размеры молекул соизмеримы с размером мономерного звена полимера и коэффициент диффузии зависит от концентрации. Размеры молекул диффузанта таковы, что он взаимодействует с полимерной структурой, усиливает сегментальную подвижность в полимерной цепи, что приводит к изменению конформации цепей. Следовательно, увеличение концентрации этих молекул приводит к пластификации. Этим объясняется наблюдаемое возрастание & с ростом концентрации диффузанта. Степень возрастания зависит от молекулярной природы как полимера, так и диффузанта, от концентрации зависит не только 2?>, но и Ed. Поэтому простое уравнение (5.5-4) не выполняется, и коэффициент диффузии выражается как[3, С.124]

При увеличении влажности волоса до 5-7% происходит экстремальное увеличение его плотности, что обусловлено гидратацией пептидных и других полярных групп полимерного субстрата. При большем содержании воды в кератине развиваются пластификационные процессы, ослабляющие межмолекулярные контакты и повышающие сегментальную подвижность полипептидных цепей. Если бы кератин был представлен в полимерном субстрате только одним типом вторичной структуры - а-спиралью, - то все они были бы жесткими палочковидными образованиями. Но макромолекулы белка включают и участки статистических клубков, а также складчатые р-структуры (правда, доля последних невелика).[2, С.380]

В уретановых термоэластопластах характер взаимодействия блоков определяет поведение их в широком температурном интервале. Связи уретан-уретан (преимущественно жесткий блок) и уретан-полиэфир обусловливают различный механизм взаимодействия сегментов, причем последний тип связи существенным образом изменяет сегментальную подвижность тех участков полиэфира, которые находятся в непосредственной близости от уретановых сегментов [54, 63]. Тем не менее, подвижность эфирных групп не подавляется полностью. Поэтому времена релаксации увеличиваются за счет того, что с возрастанием протяженности гибкого сегмента все большая часть эфирных групп выходит из сферы действия уретановых доменов. В самих жестких блоках только отдельная фаза образует кристаллиты, аморфная же проявляет достаточную подвижность.[1, С.545]

В Н. п. добиться подобного эффекта, в общем случае, невозможно. Сохраняя способность к стабилизации электронной структуры главной цепи, неорганич. обрамляющие группы не могут «защитить» цепи от внешней атаки. Кроме того, вследствие полярной природы этих групп межцепное взаимодействие обычно усиливается, что обусловливает нерастворимость или ограниченную растворимость и ограниченную сегментальную подвижность цепей.[13, С.183]

В Н. п. добиться подобного эффекта, в общем случае, невозможно. Сохраняя способность к стабилизации электронной структуры главной цепи, неорганич. обрамляющие группы не могут «защитить» цепи от внешней атаки. Кроме того, вследствие полярной природы этих групп межцепное взаимодействие обычно усиливается, что обусловливает нерастворимость или ограниченную растворимость и ограниченную сегментальную подвижность цепей.[16, С.181]

В кристаллическом полимере (полиэтилене) обнаруживаются кроме «-перехода еще два перехода —а\ и ag (см. рис, 7.3) —с тем же значением 5j = 5-10~12 с. Это указывает на то, что ai- и а2-переходы также связаны с сегментальной подвижностью, но сегмент находится в других структурных условиях. Основной «-переход ответственен за стеклование аморфной фазы полимера. Для ПЭ С/«=51,5 кДж/моль и характеризует сегментальную подвижность в аморфной фазе полимера. Переходы «1 и а,2 с C/«L=54,5 кДж/моль и С/а2=59 кДж/моль связаны с сегментальной подвижностью в переходных аморфно-кристаллических межфазных слоях и в аморфных участках лучей сферолитов. В кристаллической фазе сегментальная подвижность не проявляется (С/« = оо). Для некристаллических гибкоцепных полимеров (эластомеров, пластмасс) характерные значения С/а =30-4-50 кДж/моль, а времена релаксации ta = = 10^6-МО-3 с при ЗООК.[10, С.199]

Квадратичный О. ц.— диффузионно контролируемая реакция, состоящая, согласно теоретич. представлениям, из трех стадий: поступательной диффузии двух макрорадикалов с образованием объединенного клубка, взаимного сближения активных концов за счет диффузии отдельных сегментов и звеньев и непосредственно химич. взаимодействия реакционных центров с образованием продуктов реакции. Для большинства исследованных виниловых мономеров константа скорости квадратичного О. ц. обратно пропорциональна вязкости исходной системы, а стадией, определяющей скорость процесса, является сегментальная диффузия концов макрорадикалов. Факторы, снижающие сегментальную подвижность цепи (напр., введение в полиме-ризационную систему модификаторов — веществ, способных образовывать комплексы со звеньями полимерной цепи, или использование второго сомономера, увеличивающего жесткость цепи), значительно влияют на скорость квадратичного О. ц.[16, С.201]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
12. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
13. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную