В полимерах весьма заметна роль стерических препятствий циклодимеризации; при облучении поли-я-винилфенилэтилцинна-мата скорость исчезновения в нем двойных связей значительно больше, чем в поливинилциннамате, выше и интегральная светочувствительность этого полимера [13]. Судя по спектрам фосфоресценции модельных соединений — этилциннамата и фенил-этилциннамата, — время жизни последнего в триплетном состоянии вдвое больше. Различия во временах • жизни объясняются тем, что включение фенилэтильной группы между главной цепью полимера и циннамоильным фрагментом снимает нежелательные стерические препятствия в полимере, снижающие реакционную способность циннамоильных групп в поливинилциннамате [3].[7, С.162]
Реакция полимера на электрическое поле тем сильнее, чем лучше диполи ориентируются в нем и чем больше дипольный момент. Но не у всех полярных веществ полярные группы хорошо ориентируются как из-за стерических препятствий, так и вследствие особенностей строения полярных групп. Стериче-ские препятствия, вызванные, например, наличием массивных боковых привесков, делают невозможным образование диполь-дипольных связей как между цепями, так и вдоль полимерных цепей. В этих случаях преодоление диполь-дипольных взаимодействий требует затраты меньшей энергии, что приводит к снижению энергии активации и вносит определенный вклад в снижение Гст по мере увеличения длины боковых привесков.[6, С.244]
Большой экспериментальный материал позволил сформулировать [14] некоторые общие закономерности, согласно которым эффективность фенольпых антиоксидантов повышается при введении в молекулу фенола таких заместителей, которые в силу своих до-иорпо-акцепторных свойств или создаваемых ими стерических препятствий уменьшают полярность связи О—Н, снижают способность к образованию водородной связи и потенциал окисления (до 0,6 0,8 В) или повышают стабильность фепоксильного радикала, образующегося при окислении фенола. Ингибирующая активность аминов зависит от эффекта о— -л-сопряжения в молекуле. Так, в ряду дифениламин — фенил-р-нафтиламин — ди-^-нафтил-гг-фепи-лепдиамин она монотонно увеличивается, что проявляется в удлинении индукционного периода. Относительная подвижность водорода аминогруппы в указанном ряду увеличивается, и соответственно уменьшается активность образующего радикала 1п-. Как и в ряду фенолов, на ипгибирующую активность ароматических аминов оказывают влияние заместители, вводимые в паря-положение к аминогруппе [13].[3, С.16]
Кроме линейных макромолекул, существует другой тип непла-стицирующихся структур — предельно разветвленные частицы плотного микрогеля. Такие полимерные частицы не должны раз-рушаться при сдвиговой деформации, так как во внутренних областях сшитых структур образование захлестов затруднено вследствие стерических препятствий. Действительно, такие частицы с размерами (1—2)-102 нм обнаружены в НК, бутадиен-стирлль-ных и бутадиен-нитрильных каучуках; на рис. 4 (кривая 4) приведена зависимость вязкости по Муни бутадиен-нитрильного каучука СКН-40 СШ от времени пластикации.[1, С.77]
Вероятность образования начальных радикалов по реакции (1) и по реакции (2) не одинакова, различна и активность образующихся радикалов. Для протекания реакции (2) требуется значительно меньшая энергия активации, чем для реакции (1), и образующиеся по второй схеме радикалы более стабильны. Присоединению мономера к радикалу инициатора со стороны группы СН, способствует и отсутствие стерических препятствий, которые всегда возникают для группы CHR и возрастают с увеличением объема замещающей группы R. Поэтому строение начального радикала реакции полимеризации в подавляющем большинстве случаев соответствует схеме (2).[2, С.98]
В отсутствие стерических препятствий у реакционного центра увеличение[4, С.38]
Сравнение энергетических данных различных конфигураций и стерических препятствий позволяет предположить, что ДМДТКЦ легче будет вступать в реакции комплексообра-зования в том случае, если его молекулы имеют цис~форму. К тому же значительное повышение энергии напряжения резонансной формы молекулы ДМДТКЦ ставит под сомнение ее существование с термодинамической точки зрения.[8, С.97]
При повышении температуры и концентрации катализатора вследствие усиления взаимодействия карбкатиона с противоионом роль реакции I схемы 5.1 уменьшается. Преобладающим становится процесс деполимеризации ПИБ в результате взаимодействия карбониевого центра с электронами в р-положении к С-С-связи, что приводит к фрагментации ПИБ, т.е. р-распаду макромолекул по реакции II, схема 5.1. Условием протекания фрагментации карбониевых ионов в растворе является высокая устойчивость образующихся конечных карбкатионов, например за счет процессов внутренней стабилизации при сопряжении или индукции. В случае каталитической деструкции ПИБ арен, вероятно, выполняет роль внешнего стабилизатора ионов карбония, облегчая фрагментацию полимера по реакции II (схема 5.1), при этом возникающий в процессе деструкции ПИБ макромолекулярный фрагмент исходного карбкатиона вступает в реакцию сопряженного алкилирования с образованием аренониевых структур полиизобутиленароматических соединений с молекулярной массой М<М0. При переходе от бензола и толуола к более основным аренам глубина деструкции ПИБ уменьшается, что связано с увеличением стерических препятствий при фрагментации полимера. Одновременно выделяющийся изо-бутилен алкилирует новую молекулу арена с образованием третбутилто-луола по реакции III (см. схема 5.1). Химическое связывание изобутилена толуолом (подобно удалению мономера из зоны реакции иным путем) уменьшает равновесную концентрацию мономера и приводит к снижению Тпр при деструкции полиизобутилена.[9, С.222]
Эффекты улучшения смачиваемости, «энтропийного отталкивания» и возникновения стерических препятствий, безусловно, играют определенную роль при стабилизации дисперсий твердых частиц блок- и привитыми сополимерами. С другой стороны, поскольку дисперсии, стабилизированные блоксополимерами, характеризуются значительно большей продолжительностью осаждения, чем дисперсии, стабилизированные гомополимерами в аналогичных условиях, следует предположить, что при использовании блоксополимеров «работает» дополнительный механизм. Модель, изображенная на рис. 1, представляет собой попытку объяснить этот дополнительный фактор стабилизации с помощью хорошо известной несовместимости химически различающихся полимерных блоков. Когда две частицы сталкиваются с силой, достаточной, чтобы вызвать проникновение друг в друга двойных слоев, окружающих частицы, возникают взаимодействия, препятствующие флокуляции в тех случаях, когда слой А первой частицы проникнет в слой Б второй частицы, причем эти условия будут выполняться тогда, когда блоки А и Б несовместимы.[15, С.314]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.