На главную

Статья по теме: Стерических препятствий

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В полимерах весьма заметна роль стерических препятствий циклодимеризации; при облучении поли-я-винилфенилэтилцинна-мата скорость исчезновения в нем двойных связей значительно больше, чем в поливинилциннамате, выше и интегральная светочувствительность этого полимера [13]. Судя по спектрам фосфоресценции модельных соединений — этилциннамата и фенил-этилциннамата, — время жизни последнего в триплетном состоянии вдвое больше. Различия во временах • жизни объясняются тем, что включение фенилэтильной группы между главной цепью полимера и циннамоильным фрагментом снимает нежелательные стерические препятствия в полимере, снижающие реакционную способность циннамоильных групп в поливинилциннамате [3].[7, С.162]

Реакция полимера на электрическое поле тем сильнее, чем лучше диполи ориентируются в нем и чем больше дипольный момент. Но не у всех полярных веществ полярные группы хорошо ориентируются как из-за стерических препятствий, так и вследствие особенностей строения полярных групп. Стериче-ские препятствия, вызванные, например, наличием массивных боковых привесков, делают невозможным образование диполь-дипольных связей как между цепями, так и вдоль полимерных цепей. В этих случаях преодоление диполь-дипольных взаимодействий требует затраты меньшей энергии, что приводит к снижению энергии активации и вносит определенный вклад в снижение Гст по мере увеличения длины боковых привесков.[6, С.244]

Большой экспериментальный материал позволил сформулировать [14] некоторые общие закономерности, согласно которым эффективность фенольпых антиоксидантов повышается при введении в молекулу фенола таких заместителей, которые в силу своих до-иорпо-акцепторных свойств или создаваемых ими стерических препятствий уменьшают полярность связи О—Н, снижают способность к образованию водородной связи и потенциал окисления (до 0,6 0,8 В) или повышают стабильность фепоксильного радикала, образующегося при окислении фенола. Ингибирующая активность аминов зависит от эффекта о— -л-сопряжения в молекуле. Так, в ряду дифениламин — фенил-р-нафтиламин — ди-^-нафтил-гг-фепи-лепдиамин она монотонно увеличивается, что проявляется в удлинении индукционного периода. Относительная подвижность водорода аминогруппы в указанном ряду увеличивается, и соответственно уменьшается активность образующего радикала 1п-. Как и в ряду фенолов, на ипгибирующую активность ароматических аминов оказывают влияние заместители, вводимые в паря-положение к аминогруппе [13].[3, С.16]

Кроме линейных макромолекул, существует другой тип непла-стицирующихся структур — предельно разветвленные частицы плотного микрогеля. Такие полимерные частицы не должны раз-рушаться при сдвиговой деформации, так как во внутренних областях сшитых структур образование захлестов затруднено вследствие стерических препятствий. Действительно, такие частицы с размерами (1—2)-102 нм обнаружены в НК, бутадиен-стирлль-ных и бутадиен-нитрильных каучуках; на рис. 4 (кривая 4) приведена зависимость вязкости по Муни бутадиен-нитрильного каучука СКН-40 СШ от времени пластикации.[1, С.77]

Вероятность образования начальных радикалов по реакции (1) и по реакции (2) не одинакова, различна и активность образующихся радикалов. Для протекания реакции (2) требуется значительно меньшая энергия активации, чем для реакции (1), и образующиеся по второй схеме радикалы более стабильны. Присоединению мономера к радикалу инициатора со стороны группы СН, способствует и отсутствие стерических препятствий, которые всегда возникают для группы CHR и возрастают с увеличением объема замещающей группы R. Поэтому строение начального радикала реакции полимеризации в подавляющем большинстве случаев соответствует схеме (2).[2, С.98]

В отсутствие стерических препятствий у реакционного центра увеличение[4, С.38]

Сравнение энергетических данных различных конфигураций и стерических препятствий позволяет предположить, что ДМДТКЦ легче будет вступать в реакции комплексообра-зования в том случае, если его молекулы имеют цис~форму. К тому же значительное повышение энергии напряжения резонансной формы молекулы ДМДТКЦ ставит под сомнение ее существование с термодинамической точки зрения.[8, С.97]

Феноксильный радикал образуется только как интермедиат и термодинамически не стабилен. Образование более стабильной структуры происходит в результате рекомбинации с другим свободным радикалом в любых наиболее вероятных положениях неспаренного электрона, за исключением 3-го положения (Rv), неактивного из-за стерических препятствий и по термодинамическим причинам.[5, С.396]

При повышении температуры и концентрации катализатора вследствие усиления взаимодействия карбкатиона с противоионом роль реакции I схемы 5.1 уменьшается. Преобладающим становится процесс деполимеризации ПИБ в результате взаимодействия карбониевого центра с электронами в р-положении к С-С-связи, что приводит к фрагментации ПИБ, т.е. р-распаду макромолекул по реакции II, схема 5.1. Условием протекания фрагментации карбониевых ионов в растворе является высокая устойчивость образующихся конечных карбкатионов, например за счет процессов внутренней стабилизации при сопряжении или индукции. В случае каталитической деструкции ПИБ арен, вероятно, выполняет роль внешнего стабилизатора ионов карбония, облегчая фрагментацию полимера по реакции II (схема 5.1), при этом возникающий в процессе деструкции ПИБ макромолекулярный фрагмент исходного карбкатиона вступает в реакцию сопряженного алкилирования с образованием аренониевых структур полиизобутиленароматических соединений с молекулярной массой М<М0. При переходе от бензола и толуола к более основным аренам глубина деструкции ПИБ уменьшается, что связано с увеличением стерических препятствий при фрагментации полимера. Одновременно выделяющийся изо-бутилен алкилирует новую молекулу арена с образованием третбутилто-луола по реакции III (см. схема 5.1). Химическое связывание изобутилена толуолом (подобно удалению мономера из зоны реакции иным путем) уменьшает равновесную концентрацию мономера и приводит к снижению Тпр при деструкции полиизобутилена.[9, С.222]

Образование копланарного циклического комплекса затрудняется вследствие стерических препятствий, оказываемых поли-[10, С.107]

Эффекты улучшения смачиваемости, «энтропийного отталкивания» и возникновения стерических препятствий, безусловно, играют определенную роль при стабилизации дисперсий твердых частиц блок- и привитыми сополимерами. С другой стороны, поскольку дисперсии, стабилизированные блоксополимерами, характеризуются значительно большей продолжительностью осаждения, чем дисперсии, стабилизированные гомополимерами в аналогичных условиях, следует предположить, что при использовании блоксополимеров «работает» дополнительный механизм. Модель, изображенная на рис. 1, представляет собой попытку объяснить этот дополнительный фактор стабилизации с помощью хорошо известной несовместимости химически различающихся полимерных блоков. Когда две частицы сталкиваются с силой, достаточной, чтобы вызвать проникновение друг в друга двойных слоев, окружающих частицы, возникают взаимодействия, препятствующие флокуляции в тех случаях, когда слой А первой частицы проникнет в слой Б второй частицы, причем эти условия будут выполняться тогда, когда блоки А и Б несовместимы.[15, С.314]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
4. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
8. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
11. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
12. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
13. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
14. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
15. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
16. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
17. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
18. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
19. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
20. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
21. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
23. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
24. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную