На главную

Статья по теме: Полимеров показывает

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Анализ всех теорий адсорбции полимеров показывает, что применение современных представлений о структуре и свойствах полимеров и методов статистической механики для их количественного описания внесло существенный вклад в понимание механизмов адсорбции и предсказание адсорбционного поведения полимеров. Вместе с т.ем нельзя выделить какое-либо универсальное уравнение изотермы адсорбции. Многие данные нельзя правильно описать ни в одном из предложенных уравнений.[9, С.137]

Сравнение значений Рс для разных полимеров показывает, что увеличение химической стойкости и уменьшение долговечности приводят к увеличению Рс, так как при этом Д уменьшается, и наоборот, противоположное изменение этих параметров вызывает уменьшение Рс. В качестве примера можно рассмотреть поведение в соляной кислоте резин из СКС-ЗЭ-1, одна из которых вулканизована с помощью MgO, а другая с помощью серы (см, рис. 198). У серного вулканизата, кислотостойкость которого больше, чем вулканизованного MgO, а прочность меньше, разрушение резко ускоряется при концентрации агрессивного агента в 10 раз большей, чем у более прочного, но менее кислотостойкого. При изменении механической прочности и химической стойкости в одну сторону( например, при их одновременном увеличении) Рс в зависимости от их соотношения может сдвигаться в разных направлениях. Так, при сравнении относительной ползучести разных резин в озоне найдено, что у резины из наирита Рс в 10 раз больше, чем у СКС-30-1 (см. рис. 198). Это объясняется тем, что разница в химической стойкости между наиритом и СКС-30-1 велика, в то время как по прочностным свойствам резины из СКС-30-1 и из наирита отличаются мало.[8, С.342]

Исследование механизма и кинетики деструкции полимеров показывает, что специфическое поведение высокомолекулярных соединений в этих процессах обусловлено двумя основными причинами. Во-первых, в макромолекулах нередко встречаются структурные нарушения, связанные с неоднородностью строения макромолекул и не учитываемые в химической формуле повторяющегося звена, которые могут стать центрами инициирования процессов деструкции. Во-вторых, некоторые нецепные реакции, типичные для низкомолекулярных соединений в полимерах, вследствие цепного строения макромолекул протекают по цепному механизму.[2, С.67]

Исследование зависимости оптической плотности от соотношения полимеров показывает, что при небольших концентрациях второго полимера оптическая плотность не изменяется. Когда количество полимера превышает его растворимость, оптическая плотность увеличивается, что указывает на образование второй фазы. Длина волн проходящего света и тип растворителя не оказывают влияния на предельную растворимость полимера в полимере. --.. Изучение изменения физических и механических свойств смесей полимеров. Неоднократно делались попытки судить о совместимости полимеров по отклонению от аддитивности вязкости системы94'95, плотности96»97, прочности и других физических[7, С.21]

Таким образом, рассмотрение данных по температурной зависимости адсорбции полимеров показывает, что знак температурного коэффициента может быть различным и зависит от особенностей системы. При этом нужно учитывать одновременное действие нескольких факторов. Увеличение температуры может приводить как к ухудшению, так и к улучшению термодинамического качества растворителя, а так как качество растворителя неоднозначно влияет на величину адсорбции, то, следовательно, и зависимость адсорбции от температуры может быть сложной. Взаимодействие адсорбент — растворитель также изменяется под действием температуры[9, С.50]

Экспериментальная проверка применимости уравнения (11.72) к результатам реологических исследований расплавов полимеров показывает, что оно оказывается справедливым при изменении температуры в диапазоне примерно 30—40 К. Наглядное представление об этом дают графики зависимости lgr\ от 1/Г (рис. 11.21). Следует отметить, что при определении величины Е по результатам вискозиметрических исследований аномально-вязких жидкостей необходимо использовать значение эффективной вязкости, рассчитанное при условии постоянства напряжений сдвига. Только в этом случае удается исключить влияние напряжений сдвига на фактическую энергию активации вязкого течения [91, 92]. Значения энергии активации вязкого течения для некоторых расплавов полимеров, каучуков и резиновых смесей приведены ниже:[12, С.71]

Физико-химические процессы, связанные с переводом твердого полимера в раствор, предназначенный для переработки, внешне очень 'просты. Однако более подробный анализ механизма растворения полимеров показывает, что этот процесс осложнен практически ничтожно малыми скоростями диффузии макромолекул. В результате переход от твердого аморфного полимера к концентрированному раствору совершается путем предпочтительной диффузии растворителя в полимер с последующим срывом поверхностного слоя набухшего полимера конвекционными потоками растворителя.[10, С.232]

Информацию о связи молекулярного строения и надмолекулярной структуры полимеров с их физическими свойствами обычно получают, изучая их физические превращения (или переходы). К таким превращениям относятся процессы стеклования и плавления. Анализ экспериментальных данных, полученных для разных полимеров, показывает, что оба эти процесса наблюдаются вместе лишь у кристаллических полимеров, содержащих неупорядоченные и упорядоченные области. Из сопоставления температурных зависимостей термодинамического потенциала Ф, коэффициентов термического расширения р и изотермической сжимаемости хт следует [10.7], что характер их изменения в области стеклования и плавления полимеров оказывается примерно одинаковым (рис. 10.21).[1, С.271]

Расслоение при сливании растворов различных полимеров отличается от обычного расслоения, при котором содержание растворенного компонента в двух фазах различно (глава XIII). Анализ фаз, образующихся после расслоения растворов различных полимеров, показывает, ччо каждая фаза содержит в основном один полимер. Таким образом, в расслаивающихся растворах полимеры не совмещаются и полностью отделяются друг от друга.[4, С.458]

Изучение механизма реакций окисления полимеров показывает, что окисление[3, С.267]

Анализ высокоэластического состояния полимеров показывает, что в этом состоянии они по подвижности молекул и величине теплового расширения подобны жидкостям, по упругости напоминают газы, а по прочности и устойчивости формы — твердые тела. Эти свойства в первую очередь обусловлены размерами полимерных молекул и их гибкостью.[16, С.78]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
10. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
13. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
16. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
17. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную