На главную

Статья по теме: Релаксационным процессам

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Релаксационным процессам соответствуют максимумы как на спектрах внутреннего трения х(Г) или и (со), так и на спектрах времен релаксации Н(т). Эти спектры могут быть получены как квазистатическими методами (релаксация напряжения), так и динамическими методами (механические потери, диэлектрические потери и т. д.).[12, С.196]

Процессы релаксации, связанные с молекулярной подвижностью-коллоидных и квазиколлоидных структур в наполненных полимерах, относятся к медленным релаксационным процессам. В настоящее время установлена связь между структурными особенностями ненаполненных и наполненных активными наполнителями эластомеров и их релаксационными процессами. Выявляются релаксационные процессы, связанные как с надмолекулярной организацией,.[1, С.125]

Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных -у- и (3-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а'-переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя: Кг, 1г и Яз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а 6-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу.[1, С.129]

Следовательно, если обозначить через у* обобщенный структурный параметр, то фон внутреннего трения можно рассматривать в виде функции KQ=f(T, v, a, D, у*). Процессы а' и ср исчезают, если нет активного наполнителя, процесс 6 исчезает, если нет вулканиза-ционной сетки; Хгпроцессы ответственны за вязкое течение и реологические свойства полимеров, а также за их деформационные свойства при малых напряжениях а<сгкр (сгкр — критическое напряжение, связанное с разрушением надмолекулярных структур полимеров или сажекаучуковых структур в случае наполненных эластомеров). Нелинейная часть кривой a=f(t) относится к физическим, а линейная — к химическим релаксационным процессам. Значение энергии активации и процесса физической релаксации равно 42— 63 кДж/моль, а в случае химической релаксации оно составляет (126+8) кДж/моль. При этом для трех первых процессов U практически одинакова и составляет 55 кДж/моль для эластомера СКС-30.[1, С.140]

Отдельным релаксационным процессам соответствуют более или менее четко выраженные максимумы механических потерь[1, С.139]

Процесс разрушения более чувствителен к релаксационным процессам, чем ползучесть. Скорость процесса разрушения задолго до разогрева образца в целом изменяется за счет локальных перегревов в вершинах трещин. В этом случае критерий Бейли записывается в более общем виде:[1, С.330]

Х-Переходы, обусловленные подвижностью надмолекулярных структур, относятся к медленным релаксационным процессам и связаны с наличием физической сетки. В некоторых полимерах могут существовать физические узлы различной природы например в бутадисн-ннтрнльных эластомерах проявляется так называемый л-процесс ремаксацин, обусловтеннын днполь-дипольным взаимодействием групп СГ\'- \С— (при 363 К) (см. рис. 4.13) При образовании водородных связей в спектре обнаруживается переход, аналогичный я перехочу, но при более высокой температуре. Переходы обусловленные релаксацией химических связей между молекулами (6), также могут проявиться в виде нескольких максимумов, если существуют связи различной энергии. Так, в серных резинах наряду с переходом бс-с имеет место переход й5. сбусловлснньп подвижностью (т. е разрывом) химических серных связей.[2, С.263]

Мы предприняли попытку проверить применимость рассмотренных выше представлений к медленным релаксационным процессам, которые происходят при изотермическом сжатии тонких слоев полимеров на твердых поверхностях [196]. В табл. III. 2 приведены значения Тс, осс и аж и величин (аж—ас)Тс и «ж^с Для исследованных систем. Как видно, значение (сеж — ас) Тс отвечает обычно наблюдаемым значениям 0,10—0,13, за исключением низкомолекулярного полиметилметакрилата, для которого (<хж — ас) Тс = 0,08 [235]. Значение ажГс также близко к универсальному' значению. Следовательно, концепция, связывающая процессы стеклования с величинами свободных объемов, применима также к процессам, протекающим в тонких поверхностных слоях полимеров на твердой поверхности. Термический коэффициент расширения полимера в поверхностном слое при температурах выше и ниже Тс закономерно увеличивается с увеличением поверхности наполнителя. Это указывает на возникновение в тонких слоях полимера на наполнителе неплотной упаковки и увеличение в них доли свободного объема.[7, С.111]

Однако имеются и релаксационные процессы, где фактор диэлектрических потерь уменьшается при снижении степени кристалличности. К таким релаксационным процессам относятся а-процессы у полиэтилена, полиоксиметилена, поливинилиден-фторида на низких частотах вблизи Тпл. Для а-процесса у этих полимеров характерны энергия активации, составляющая несколько десятков кДж/моль, уменьшение е^'акс с повышением частоты и исчезновение этих потерь при плавлении полимера. Этот релаксационный процесс очень чувствителен к изменению сферолитной структуры материала. Так же, как и у аморфных полимеров, у частично кристаллических полимеров могут наблюдаться дипольно-сегментальные и дипольно-групповые потери, обусловленные молекулярным движением в аморфных областях [4, с. 137].[9, С.91]

Осуществляется по перегибам или максимумам на температурных зависимостях оптической плотности, интегральной интенсивности и полуширины полос поглощения. Метод имеет среднюю чувствительность и хорошее разрешение по всем видам переходов. К релаксационным процессам наиболее чувствительны такие параметры, как интегральная интенсивность и полуширина полос поглощения, а фазовые кристаллизационные переходы хорошо разрешаются и количественно описываются по изменению оптической плотности [45]. Результаты ИК анализа хорошо коррелируют с данными динамических, диэлектрических и тепловых методов, однако метод не нашел широкого распространения ввиду сложности обработки результатов и аппаратурного оформления.[3, С.234]

В действительности измерения релаксации напряжения скрывают широкий спектр времён релаксации и весьма чувствительны к структуре полимера. Повышение молекулярной массы ( т.е. увеличение вязкости по Муни ) и возрастание длинноцепочечной разветвлён-ности приводят к более длительным релаксационным процессам, т.е. к меньшим значениям ( абсолютным ) наклона кривой. Однако в отличие от Д8 этот показатель зависит от вязкости по Муни. Более вязкие каучуки имеют более длинные полимерные цепи, что приводит к большему числу точек физического межмолекулярного взаимодействия и, следовательно, к замедлению релаксационных процессов. Однако такое же влияние на скорость релаксации оказывает и повышение длинноцепочечной разветвлённости.[3, С.441]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
7. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
8. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
9. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
10. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
11. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
12. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
13. Виноградов Г.В. Реология полимеров, 1977, 440 с.
14. Иржак В.И. Сетчатые полимеры, 1979, 248 с.

На главную