На главную

Статья по теме: Результате релаксации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Падение напряжения в результате релаксации зависит не только от времени, но и от температуры. Выше подчеркивалась взаимная связь между влияниями каждого из этих параметров на релаксационные свойства полимеров, заключающаяся в том, что увеличение времени t действия силы или снижение частоты ю приложенной нагрузки эквивалентно уменьшению температуры Т. В этой эквивалентности и заключается суть принципа температурно-временной суперпозиции, впервые сформулированного А. П. Александровым и Ю. С. Лазуркииым; пользуясь им, можно построить обобщенную кривую релаксации (обычно для 25°С), охватывая весьма широкий интервал значений ю, в том числе таких, которые трудно или даже иевозможно получить в лабораторных условиях.[3, С.394]

Кривые напряжения для обоих типов деформационных схем (кривые 5) указывают, что в случае жесткой схемы в результате релаксации при постоянной длине в волокне фиксируется значительная часть возникших при деформации напряжений (более половины от их максимальной величины), в то время как для разгруженной схемы эти напряжения снимаются почти все. Сопоставление кривых 2 и 5 (рис. 1, а и б) показывает, что установлен-[8, С.272]

В качестве критерия для оценки перерабатываемости каучуков было предложено t8o - время, в течение которого величина крутящего момента в результате релаксации снижается на 80 %, т.е. М, — 0,2 К (ASTM D1646-96). Поскольку tso - это время, при котором f - 0,2, то t8o является другим способом выражения наклона кривой релаксации напряжения. Однако t8<} есть результат единичного измерения, тогда как наклон кривой релаксации а рассчитывается по многим точкам, и поэтому следует ожидать большей точности его определения. В момент, когда достигается tso, значение крутящего момента снижается до весьма низкого уровня и доля помех в измеряемой величине (выражаемая как коэффициент вариации V) становится больше.[2, С.442]

Релаксация напряжения определяется как изменение напряжения в материале при неизменной деформации. Когда упаковочная пленка обертывается вокруг изделия или множества изделий, ее упругость плотно удерживает изделие(я). В результате релаксации натяжение исчезает, и содержимое упаковки больше не удерживается вместе. Релаксация напряжения может быть измерена с помощью[10, С.36]

Многие резиновые изделия работают в условиях многократно повторяющихся деформаций. В одних случаях режим деформации таков, что максимальная за цикл деформация сжатия, растяжения или лзгиба задана, а максимальная нагрузка в результате релаксации напряжения уменьшается. В других случаях сохраняется постоянным значение максимальной деформирующей нагрузки, а величина максимальной деформации вследствие ползучести с течением времени возрастает*. Этим режимам эксплуатации изделий соответствуют два режима испытания образцов резины на динамическую усталость при многократных растяжениях:[4, С.204]

Аналогичные закономерности наблюдаются для бутадиен-стирольных каучуков, содержащих карбоксильные группы. При вулканизации оксидами металлов эти каучуки приобретают высокую статическую прочность, которая объясняется подвижностью вулканизационных связей. Способность этих связей к перегруппировкам благоприятствует релаксации местных напряжений, возникающих при деформации вулканизата, что отчетливо проявляется в опытах по изучению релаксации напряжений. Б. А. До-гадкин считал, что при понижении напряжения до нуля в результате релаксации степень поперечного сшивания не меняется, т. е. уменьшение напряжения связано не с распадом вулкани-[5, С.207]

Высокообъемная пряжа. Высокообъемная пряжа вырабатывается из смеси штапельных хнмич. волокон, имеющих различную усадку (30—50% высокоусадочного волокна и 70—50% низкоусадочного), в резаном виде или в форме жгутов. В качестве высокоусадочного компонента используют полиакрилонитрильные волокна или сополимерные волокна на основе акрилонитрила, к-рые обладают большой (до 30%) усадкой после водно-термич. обработки. Низкоусадочным компонентом могут служить любые химич. или натуральные волокна, однако наиболее целесообразно использовать полиакрилонитрильные волокна с низкой усадкой или другие виды синтетич. волокон, в частности полиэфирные. Пряжа из смеси высоко- и низкоусадочных волокон после термообработки в мотках превращается в высокообъемную. Это происходит потому, что при тепловой обработке высокоусадочные волокна укорачиваются (усаживаются) в результате релаксации макромолекул, а малоусадочные почти не меняют своей длины, но, будучи связанными силами трения с высокоусадочными, изгибаются, придавая пряже пушистый вид (большой удельный объем).[11, С.273]

Высокообъемная пряжа. Высокообъемная пряжа вырабатывается из смеси штапельных хпмич. волокон, имеющих различную усадку (30—50% высокоусадоч-пого волокна и 70 — 50% низкоусадочного), в резаном виде или в форме жгутов. В качестве высокоусадочного компонента используют полиакрилонитрильные волокна или сополиморпыо волокна на основе акрилоиитрила, к-рые обладают большой (до 30%) усадкой после водно-термич. обработки. Низкоусадочным компонентом могут служить любые химпч. или натуральные волокна, однако наиболее целесообразно использовать полнакри-лонитрильпые волокна с низкой усадкой пли другие виды сиитетич. волокон, в частности полиэфирные. Пряжа из смеси высоко- и низкоусадочных волокон после термообработки в мотках превращается в высокообъемную. Это происходит потому, что при тепловой обработке высокоусадочные волокна укорачиваются (усаживаются) в результате релаксации макромолекул, а малоусадочные почти не меняют своей длины, но, будучи связанными силами трения с высокоусадочными, изгибаются, придавая пряже пушистый вид (большой удельный объем).[9, С.276]

4. Термическая обработка криптоконденсационных структур и стабильных конденсационных структур при 140° (последних при давлении 5—10 кГ/см2) позволяет превратить их в гомогенные полимеры, по данным рентгеновского рассеяния, сохраняющие лишь небольшие остатки гетерогенности. Изменения характера ультрамикрогетерогенно-сти криптоконденсационных структур при такой обработке невелики. Сущность термической обработки, видимо, сводится лишь к стиранию информации о микрогетерогенном происхождении данного полимера в результате релаксации системы внутренних напряжений, отличающих криптоконденсационную структуру от гомогенного полимера.[6, С.116]

«серебра» — особый вид дефектов, которые возникают при деформировании стеклообразных чсхрупких тел по механизму вынужденной высокоэ.п1стичностн. В микротрещинс происходит расстаивание полимера на микротяжи и вся микротрещина оказывается заполненной (ерсдующимися областями ориентированного полимера и микропустотами (рис. 5.37). Наличие этих рещин практл1 ески не влияет на прочность н модуль, так как трещина не растет, поскольку створки ее скреплены тяжами, которые принимают на себя нагрузку и снижают перенапряжение в вершинах трещины. Микрорасслаивание материала связано с ос. процессом ре таксации, протекающим под действием напряжения В результате релаксации происходит снижение коэффициента концентрации напряжений.[1, С.330]

показано на рис. 68. Значения напряжений н и этом рисунке! умножень? па 298/Т, чтобы привести их к «эквивалентным напряжениям» при 25:, которые уже можно сравнивать непосредственно [см. уравнение (62)1. При низких температурах релаксация связана с разрывом и последующим образованием вторичных связей между цепями, находящимися уже в смещенном положении по отношению к исходному. При этом не происходи-) остаточных изменений в химической структуре полимера и процесс полностью обратим. При повышении температуры межмолекулярные свя.ш. образованные силами Ван-дер-Ваальса, становятся все менее стабильнь:.,!п. ц это происходит до тех пор, пока время их релаксации не станет соизмеримым с интервалом времени до первого отсчета. Таким образом,- при промежуточных температурах не наблюдается изменения напряжения во времени. При наиболее высоких температурах из указанных на рис. 68 в результате релаксации напряжение становится ниже этого значения, что тесно связано с ухудшением свойств каучука. Процесс совершенно необратим и, как это следует из данных о влиянии кислорода и антиокислителе!) на его скорость, обусловлен химическим разрушением макромолекулярноп структуры при окислении. Другими словами, он связан с уменьшением в результате деструкции числа цепей, входящих в молекулярную сеткх и воспринимающих напряжение в растянутом образце.[7, С.168]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
2. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
3. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
4. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
7. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
8. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную