На главную

Статья по теме: Стационарного состояния

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Воспользовавшись принципом стационарного состояния (т. е. приравнивая скорости реакций возникновения активных центров и обрыва цепей), можно вычислить стационарную концентрацию активных центров и найти зависимость между скоростью полимеризации и другими показателями процесса цепной цолимеризации.[4, С.76]

Для вывода кинетических уравнений используют принцип стационарного состояния Боденштейна. Сущность этого принципа заключается в том, что в некоторый момент времени после начала реакции в системе устанавливается постоянная стационарная концентрация активных радикалов (число образующихся активных радикалов равно числу исчезающих активных радикалов) . Таким образом, в момент установления стационарного состояния скорости инициирования (уи=^и[И]) и обрыва (u0:=^o[R<]2) равны:[2, С.12]

При реализации непрерывного режима через ячейку с заданным расходом пропускают потоки водного раствора и газообразного или органического экстрагента и после установления стационарного состояния измеряют концентрацию целевых компонентов в выходящем из ячейки потоке экстрагента. Для решения задачи концентрирования с получением выделенных веществ применяется дискретная схема проведения хроматомембранного процесса. В этом случае потоки двух фаз пропускают через ячейку последовательно с перекрытием каналов на входе и выходе той фазы, которая в данный момент является неподвижной. При перекрытии потока неполярной фазы должно соблюдаться соотношение PI < Рк, в обратном варианте - РЗ < Рк. В дискретном режиме ячейка сначала заполняется экстрагентом, затем через масообменный слой пропускают анализируемую пробу в заданном объеме, после чего проводят элюирование веществ, сконцентрированных в экстрагенте. Определение концентрации вещества в элюате может осуществляться любым методом, например с помощью спектрофотометрического или люминесцентного детектора, или (в случае газа) газового хроматографа.[7, С.99]

Наиболее важными с точки зрения формирования именно сополимера, а не гомополимеров из MI и М2 являются скорости реакций (2) и (3) с константами /г]2 и k2\. Если эти скорости равны, то такое состояние в сополимеризующейся системе называется стационарным. (ср. понятие стационарного состояния в свободноради-кальной гомополимеризации) . Тогда[3, С.60]

Как видно из рис. 1.2, на кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации: 1) участок ингиби-рования, где концентрация свободных радикалов мала и они не могут начать цепной процесс полимеризации; 2) участок ускорения полимеризации, где начинается основная реакция превращения мономера в полимер, причем скорость растет; 3) участок стационарного состояния, где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость[3, С.26]

Кинетика радикальной полимеризации. Рассмотрим начальную стадию цепной полимеризации, т. е. стадию, когда степень превращения мономера в полимер невелика. По экспериментальным данным, на ранних стадиях процесса средняя степень полимеризации образующегося полимера остается постоянной, а время жизни растущих радикалов очень мало. На этой стадии полимеризации реакцией передачи цепи можно пренебречь, поскольку она протекает с заметной скоростью лишь при достаточно высоких степенях превращения. Поэтому для вывода кинетических уравнений можно воспользоваться принципом стационарного состояния Боденштейна. Сущность этого принципа заключается в следующем. В некоторый момент времени в системе начинают генерироваться со скоростью va активные центры, концентрация которых [п] непрерывно возрастает. Одновременно активные центры исчезают в результате обрыва цепи со скоростью и0бр, причем с увеличением концентрации активных центров скорость реакции обрыва цепи возрастает. В результате через некоторый промежуток времени устанавливается стационарная концентрация активных центров (число вол-[4, С.75]

Отличительной особенностью изобутилена является его высокая реакционная способность по отношению к катионным агентам и, как следствие, очень высокие скорости процесса, сопровождающиеся выделением значительного количества тепла. Достаточно конкретное и точное измерение скорости полимеризации изобутилена вряд ли к настоящему времени проведено из-за трудностей в постановке корректных количественных опытов (влияние примесей, неизотермический характер процесса) и отсутствия экспериментальных данных о природе и концентрации АЦ. По-существу, термин «кинетика катионной полимеризации изобутилена» не существует по следующим причинам: мультиплетность А Ц, отсутствие стационарного состояния, неопределенность реакций передачи цепи и порядка реакций по компонентам (первый, второй или более высокий), трудноучитываемые в кинетических уравнениях эффекты растворителя и противоиона и др. Поэтому сведения о кинетике полимеризации изобутилена имеют частный характер и достаточно приближены даже при исследовании процессов, протекающих с умеренной скоростью и образованием продуктов невысокой молекуляр-[9, С.115]

Принцип стационарного состояния (Боден-[2, С.255]

В условиях стационарного состояния (J.80) npw бимолекулярном обрыве и соизмеримых величинах R0 и Я? из уравнения (1.81) получается[5, С.60]

Воспользовавшись принципом стационарного состояния, можно найти зависимости средней степени полимеризации Р и суммарной скорости реакции v от концентрации катализатора. Средняя степень полимеризации определяется следующим образом:[4, С.83]

При достаточно большом времени должно достигаться стационарное состояние для всех видов резонанса. Природа стационарного состояния и скорость его достижения определяются уравнениями Блоха. В своем рассмотрении Блох принял, что для отдельных процессов соблюдается пропорциональная зависимость между компонентой намагниченности и скоростью спонтанной ее потери, т. е. спонтанное исчезновение намагниченности первого порядка. Константы пропорциональности обратно пропорциональны двум так называемым временам релаксации: Т^ — времени «продольной», или «спин-решеточной», релаксации, которая связана с изменениями намагничивания в z-направлении вдоль постоянного поля Я0, и Т2 — времени «поперечной», или «спин-спиновой», релаксации, связанной с потерей фазовой когерентности прецессии в направлениях х и у в радиочастотном поле. В случае идеального резонанса ширина линии равна просто 1 /Т2 (при соответствующем определении ширины линии). 7\ и Т2 просто связаны с насыщением сигнала в очень сильных радиочастотных полях:[18, С.411]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
2. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
6. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
13. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
14. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
15. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
16. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
17. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
18. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
19. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
20. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
24. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
25. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
26. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
27. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
28. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
29. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную