На главную

Статья по теме: Структура макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Комплекс физико-химических свойств природных волокно-образующих полимеров обусловлен первичным, вторичным и более высокими уровнями их структурной организации. Каждый из полимеров, представляющий интерес как волокнообразую-щий (целлюлоза, хитин, фибриллярные белки), имеет определенное биофункциональное назначение. Особенность биосинтетических процессов такова, что первичная структура макромолекул этих полимеров формируется как регулярная, несмотря на возможность случайного включения в них "дефектных" звеньев. Регулярность строения полимерных цепей предопределяет возможность их самоупорядочения (кристаллизации). Параметр гибкости макромолекул природных волокнообразующих полимеров /ф несколько больше 0,63, что позволяет отнести их к полужесткоцепным полимерам.[2, С.288]

Вторичная структура макромолекул этих полимеров фиксируется системой внутри- и межмолекулярных водородных связей.[2, С.289]

Первичная структура макромолекул кератина до настоящего времени не уточнена, что обусловлено химической неоднородностью белкового субстрата, а-Спиральные участки полипептидных цепей имеют протяженность около 100 А .[2, С.380]

Первичная структура макромолекул - порядок и способ чередования элементарных звеньев в полимерной цепи.[2, С.402]

Поскольку структура макромолекул, определяющая свойства полимера, зависит от условий его получения (например, молекулярной массы, степени кристалличности), наряду с методом определения структуры необходимо указать и способ получения полимера (например, радикальная полимеризация при 80°С, полимеризация с определенным металлоорганическим смешанным катализатором при 20 °С).[13, С.68]

Химическая структура макромолекул. По химическому строению основной цепи полимеры классифицируют следующим образом. Полимер называют органическим, если цепь его макромолекулы состоит из атомов углерода; элементорганическим, если цепь составлена атомами кремния, фосфора и другими, к которым присоединены углеродные атомы или группы; неорганическим, если в цепи и в боковых группах атомы углерода отсутствуют.[8, С.9]

Складчатая структура макромолекул полиэтилена, образующих монокристаллы [1], вначале воспринималась как нечто уникальное, однако, как было показано в предыдущих разделах, по мере накопления данных и проведения последующих исследований становилось все более очевидным, что явление складывания цепей является наиболее характерной особенностью кристаллизации полимеров. Было обнаружено вначале для полиэтилена, а затем для большого числа других кристаллизующихся полимеров, что при кристаллизации из раствора или расплава, как правило, наблюдается складывание макромолекул. Более того, явление складывания макромолекул является доминирующим механизмом при кристаллизации и в таких специфических условиях, как при молекулярной ориентации [2] или же в поле сдвиговых напряжений [3—5].[24, С.270]

Разветвленная структура макромолекул полимера возникает в процессе его получения. Схематично структуру разветвленного (привитого) полимера можно изобразить следующим образом:[3, С.34]

Гомополимеры. Структура макромолекул гомополимера характеризуется: а) молекулярной массой, б) распределением по размерам макромолекул, т. е. молекулярно-массовым распределением, в) наличием изомеров. Изомерными являются линейные, разветвленные и сшитые макромолекулы (например, частицы микрогеля). Обладая примерно одинаковой молекулярной массой, такие макромолекулы с ростом разветвленности становятся все более «компактными», что приводит к существенным изменениям механических свойств. Среди макромолекул существуют цис- и транс-[8, С.91]

Более упорядоченная структура макромолекул ПЭНД обусловливает и более высокие плотность (0,95—0,96 г/см3), степень кристалличности (75—85%), механическую прочность, модуль упругости при изгибе и теплостойкость. При повышении температуры степень кристалличности уменьшается, и при 130 °С и выше ПЭВД становится аморфным. Соответственно изменяется удельный объем. Зависимость удельного объема от температуры показана на рис. 7. Для сравнения приведена аналогичная кривая и для ПЭВД.[16, С.17]

Мерность и фрактальная структура макромолекул могут самым непосредственным образом отразиться на значениях скейлинговых показателей, получающихся, скажем, при измерениях [т)]. В опытах с лиотропно-мезогенным жестким «-спиральным поли-у-бензил-?-глутаматом (ПБГ) при повышении концентрации можно было наблюдать изменения скейлинговых показателей по отношению к зависимости аналога [г\] при конечной концентрации: [ц] = d\n r\r/dc ([f\] —текущая характеристическая вязкость; т)г — относительная вязкость) в сторону уменьшения, которое для гибкоцепных полимеров удобнее всего было сначала трактовать именно как предсказываемое теорией и опытами поджатие клубков с ростом с. Однако ни о каком поджатии у стержневидных молекул ПБГ говорить не приходится, и почти скачкообразное уменьшение в очень узком интервале концентраций скейлинговых показателей по отношению к М или с приходится объяснять уже с позиций динамического скейлинга: потерей (из-за взаимных помех) одной вращательной степени свободы в макроброуновском движении. Конечно, у ПБГ это следует понимать буквально и как «сигнал» будущего перехода в мезоморфное — нематическое состояние. Клубки же, разумеется, не могут превратиться в диски, но уменьшение их вращательного вклада в [fj] — такое же, как если бы их координационная сфера превратилась в «координационный диск». Наблюдать этот переход поведения легко в координатах lnr\r = f(c), когда при некоторой концентрации кривая спрямляется, достигая наклона, который был бы у [fj] в 9-точке (как по с, так и по М, в координатах МКХ). Однако[12, С.398]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
8. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
9. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
10. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
11. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
12. Бартенев Г.М. Физика полимеров, 1990, 433 с.
13. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
14. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
15. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
16. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
17. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
18. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
19. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
20. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
21. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
22. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
23. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
24. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
25. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
26. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
27. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
28. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
29. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
30. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
31. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную