На главную

Статья по теме: Элементов надмолекулярных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Способы исследования надмолекулярной структуры включают установление формы, размеров н относительного расположения различных элементов надмолекулярных образований различной степени упорядоченности. Их мож-[2, С.85]

По данным измерения [91] оптической плотности были получены несколько более высокие значения — 8—10~3 г/л. Начиная с этой концентрации происходит ассоциация элементов надмолекулярных структур — фибрилл. В результате в концентрированных водных растворах ВРП (например в растворах К-4, К-6) возникают различного рода структуры.[3, С.35]

Наличие границы раздела полимер — твердое тело оказывает различное влияние на отдельные релаксационные механизмы и тем самым на температуры переходов. Однако Тс определяется подвижностью не только сегментов, но и больших структурных элементов цепей, вплоть до элементов надмолекулярных структур [189, 190]. Поэтому в общем виде Тс нельзя рассматривать только как температуру, при которой проявляется сегментальная подвижность. Тем обстоятельством, что процесс стеклования протекает од-новремено по нескольким различным механизмам, объясняется наличие температурного.интервала стеклования, а также зависимость Тс от метода ее определения. Поэтому представляет интерес исследование релаксационных процессов, характеризующихся максимальными временами релаксации, т. е. таких, участие в которых принимают достаточно большие структурные элементы.[5, С.104]

Сопоставление этих данных с результатами электронно-микроскопических исследований, полученных при изучении влияния надмолекулярных структур на процесс структурооб-разования в растворах продуктов гидролиза полиакрилонит-рила едким натром [54], показывает, что первая точка изгиба на кривой «оптическая плотность раствора К-4 — концентрация полимера» соответствует ассоциации элементов надмолекулярных структур — фибрилл, состоящих из ориентировочных распрямленных макромолекул препарата, а вторая — агрегированию ассоциатов.[3, С.52]

Если парамагнитная частица не присоединена химически к макромолекулам, а распределена в полимере или его р-ре, она играет роль парамагнитного зонда — датчика информации о микроструктуре и молекулярной подвижности полимерной матрицы. Метод парамагнитного зонда нашел широкое применение для исследования структурных превращений полимеров (кристаллизация, ориентация, образование элементов надмолекулярных структур и др.). Если полимер структурно неоднороден, то радикалы-зонды, находящиеся в различных но структуре участках полимера, дают различающиеся спектры. На этом основано применение метода для исследования микрогетерофазности полимеров и их структурной неоднородности в твердой фазе и в растворе.[7, С.477]

Если парамагнитная частица не присоединена химически к макромолекулам, а распределена в полимере или его р-ре, она играет роль парамагнитного зонда — датчика информации о микроструктуре и молекулярной подвижности полимерной матрицы. Метод парамагнитного зонда нашел широкое применение для исследования структурных превращений полимеров (кристаллизация, ориентация, образование элементов надмолекулярных структур и др.). Если полимер структурно неоднороден, то радикалы-зонды, находящиеся в различных по структуре участках полимера, дают различающиеся спектры. На этом основано применение метода для исследования микрогетерофазности полимеров и их структурной неоднородности в твердой фазе и в растворе.[9, С.476]

Особенности строения полимеров и существование различных форм их молекулярной подвижности приводят к появлению различных релаксационных процессов, каждый из которых связан с тепловым движением тех или иных структурных элементов. Поведение последних в целом может быть описано спектром времен релаксации, в котором за быстрые релаксационные процессы ответственны мелкомасштабные движения макромолекул, а времена релаксации, связанные с подвижностью более крупных участков самих макромолекул (сегментов и субцепей) и с подвижностью различных элементов надмолекулярных структур и частиц активного наполнителя, могут быть довольно большими и распределяться в-большом диапазоне временной шкалы. Соответствующие им релаксационные процессы протекают относительно медленно.[1, С.125]

|_г^,„^^^„„„ ^^r,,,ttriij <и-м1М1л«отпт-ш мякпомплекул и почти всех элементов надмолекулярных структур деформация полимера осязательно в той или иной мере сопровождается ориентацией структурных элементов. Наиболее полное представление о степени, ориентации структурных элементов в полимере дает функция распределения по углам относительно оси ориентации 6: строится функциональная зависимость между значением 0 и долей от общего числа структурных элементов тех из них, которые ориентированы относительно оси ориентации именно под этим углом.[4, С.60]

но рассматривать [5.5] как систему (С), в которую входят несколько слабо взаимодействующих между собой подсистем (П). В общем случае такими подсистемами являются совокупности элементов надмолекулярных структур (например, микроблоков разных типов), макромолекул одинаковой или разной длины (при наличии полидисперсности), свободных и связанных сегментов, различных по размерам атомных групп, электронных и ядерных спинов, а также различных квазичастиц (фононов, поляронов, магнонов и флукту-онов). Для каждой из указанных подсистем характерны свои вполне определенные значения физических величин, описывающих[1, С.143]

фекты уменьшения плотности упаковки в присутствии наполнителя выражены в значительно большей степени для образцов, полученных отливкой из растворов, чем получаемых прессованием. Это связано с тем, что в ходе формирования полимерного материала взаимодействие полимерных молекул или молекулярных агрегатов с поверхностью наполнителя изменяет условия протекания релаксационных процессов. Вследствие взаимодействия цепей с поверхностью происходит ограничение подвижности цепей и элементов надмолекулярных структур, что приводит к возникновению неплотно упакованной структуры. Совершенно очевидно, что в том случае, когда протекание релаксационных процессов в наполненном полимере облегчено, наполнитель будет оказывать меньшее действие на процессы структурообразования.[5, С.19]

образцов со структурой, сформированной при высоких либо при низких температурах (по сравнению с некоторой заданной температурой) на высокоэластическом плато, релаксирует до «равновесного» значения с временем релаксации т=Ю4-ь105 с (при 293— 303 К). Это явление можно объяснить протеканием процессов структурной релаксации эластомеров, связанной с формированием для каждой температуры надмолекулярной структуры, а следовательно, с А-процессами релаксации, скорость которых определяется временами жизни элементов надмолекулярных структур (микроблоков). Время релаксации неустановившейся скорости ползучести t=1044-105c при 293—303 К соответствует времени релаксации самого длительного[1, С.137]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
4. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
9. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную