На главную

Статья по теме: Изменения характера

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Во-вторых,' при вытяжке возникает анизотропия свойств полимера из-за изменения характера молекулярной ориентации, вследствие чего возрастает жесткость в направлении растяжения. Это наиболее общее явление, присущее как аморфным, так и кристаллическим полимерам. (Следует подчеркнуть, что теории механической анизотропии свойств, рассматривавшиеся в разделах 10.6 и 10.7, относятся к конечному состоянию ориентированных материалов и неприменимы для объяснения эффекта деформационного упрочнения.)[8, С.298]

Современная теория определяет жидкости, твердые тела [18] и газы с позиций изменения характера теплового движения, которое, в свою очередь, связано с изменением структуры. Структура, определяемая в самом широком смысле слова как взаимное расположение и взаимосвязь основных элементов системы (в данном случае — атомов или молекул), количественно характеризуется степенью порядка и плотностью упаковки этих элементов. Названные характеристики и подвижность, или интенсивность теплового движения, взаимосвязаны и лишь рассматриваемые одновременно позволяют судить о механических свойствах системы.[1, С.74]

Известно, что при отжиге чистой холоднокатаной Си происходят наиболее яркие изменения характера кристаллографической текстуры, когда текстура деформации изменяется на текстуру рекристаллизации. Это приводит к коренному изменению характера анизотропии упругих свойств в данном материале [245, 250-253].[2, С.174]

Таким образом, впервые установлено, что характер надмолекулярных структур под действием деформирующих напряжений претерпевает резкие изменения. Эти изменения при температурах, значительно более низких, чем температура фазового превращения, протекают практически мгновеппо. Это свидетельствует о том, что процесс изменения характера надмолекулярных структур под действием напряжений, очевидно, не связан с молекулярными перегруппировками, которые, как известно, протекают с большими[11, С.377]

При увеличении концентрации узлов должны появляться цепи сетки, длина которых меньше длины кинетического сегмента, причем вследствие статистического характера процесса сшивания даже при относительно небольшой степени сшивания всегда имеется некоторая конечная вероятность такого события, которая должна возрастать с увеличением концентрации узлов. Один этот факт, очевидно, может привести к изменению интенсивности и ширины перехода вследствие изменения характера распределения кинетических единиц по энергиям, необходимым для размораживания ихподвиж^ ности. Кроме того, при изменении концентрации узлов изменяется межмолекулярное взаимодействие между цепями, причем в зависимости от конкретной химической природы сшиваемых макромолекулярных цепей это изменение может быть как положительным, так и отрицательным. Изменение межмолекулярного взаимодействия влечет за собой также изменение энергий перехода ротационных изомеров цепи. Учитывая кооперативный характер[10, С.209]

Еще |более отчетливо проявляется влияние характера межмолекулярного взаимодействия на динамические модули упругости одного и того же полимера, находящегося в разных физических состояниях. В стеклообразном состоянии, когда межмолекулярное взаимодействие достаточно велико, динамические модули упругости большинства линейных аморфных полимеров имеют значения порядка 103 МПа. В высокоэластическом состоянии, .когда энергия межмолвкулярного взаимодействия существенно меньше, динамические модули упругости тех же полимеров составляют 0,1—1 МПа. Так как изменения характера надмолекулярной организации макромолекул, состава компонентов в полимерных композициях, температуры полимера в .конечном счете приводят к изменению эффективности межмолекулярного взаимодействия, то понятно, что все эти факторы весьма чувствительно влияют на величину и характер динамического модуля упругости и скорости звука. Таким образом, динамический модуль и скорость звука позволяют получить информацию двух видов: во-первых, сведения о важнейших механических (деформационных) свойствах полимеров и, во-вторых, о структуре, строении и состоянии полимера. Кроме того, эти параметры позволяют изучить релаксационные процессы, которые и обусловливают важнейший комплекс физико-механических свойств полимеров.[6, С.258]

Быстрое развитие резиновой промышленности в значительной степени было обусловлено сделанным Гудьиром в 1839г. открытием, что нежелательные термопластические свойства натурального каучука (липкость при высоких температурах, твердость и хрупкость при охлаждении) можно устранить нагреванием его с серой. Выяснение химизма этих изменений, как и многих других процессов, происходящих с участием макромолекул, стало возможным лишь после того, как было выяснено строение полимеров. Ранние представления сводились к предположению о возможности индуцирования серой физических перегруппировок или изменения характера их взаимодействия. В настоящее время считают (хотя этот взгляд, вероятно, принят не всеми ill), что эти изменения обусловлены образованием межмолекулярных поперечных связей («сшивание»), а термин «вулканизация», который вначале был предложен для описания реакции с серой, теперь все чаще используется для описания любого процесса «сшивания» макромолекул или переведения полимера в нерастворимое состояние (например, фотовулканизация или свободнорадикальная вулканизация) 12].[9, С.193]

Влияние концентрации полярного наполнителя на свойства ре~ин обусловлено его природой и удельной поверхностью (рис. 2.27). В смесях с аэросилом сопротивление разрыву, напряжение при удлинении и относительное удлинение вулканизатов возрастают во всем исследованном интервале концентраций (до 60 масс, ч.), а в смесях с каолином увеличение содержания наполнителя свыше 30 >м,аес. ч. не влияет на свойства резин. Удельная поверхность аэросила значительно выше, чем каолина или мела, поэтому возможно (хотя бы частично) распределение МАА или ЦЭМА на поверхности в виде отдельных молекул. Следствием такого изменения характера процесса является заметное увеличение межмолекулярного взаимодействия каучука с наполнителем, а, следовательно, и эффекта уси-[4, С.126]

Морфология редкосшитых полимеров мало отличается от таковой для линейных полимеров [152—162]. В редкосшитых сетчатых полимерах могут быть реализованы все морфологические структуры (глобулы, сферолиты, кристаллиты, фибриллы и т. п.), характерные для линейных полимеров. Однако по мере увеличения концентрации узлов сетки наблюдаются прогрессирующие затруднения для образования хорошо упакованных морфологических структур с высокой степенью упорядоченности межузловых цепей, так что в конечном счете для густосетчатых полимеров (концентрация узлов сетки ~1021 узлов/см3) подобные структуры вырождаются вовсе и фундаментальным структурным элементом для густосетчатых полимеров являются исключительно глобулы [152, 153, 162—165]. Все попытки изменения характера морфологической структуры таких полимеров за счет широкого-варьирования химического строения исходных реагентов — олигомеров и отверждающих агентов, за счет изменения условий образования полимера или воздействия на уже сформированный полимер тепловых и механических полей не приводят к изменению морфологии густосетчатого полимера: во-всех случаях она остается глобулярной, варьируют в некоторой степени лишь размеры глобул.[10, С.150]

Слагаемыми общего эффекта крашения термопластов, если при этом необходимо распределение и измельчение компонентов, являются скорость частиц в потоке, скорость сдвига, профиль потока, сообщаемое массе напряжение сдвига и время пребывания частиц в зоне нагрузки. Для получения высокого градиента сдвига в машинах предусматриваются узкий зазор и высокая частота вращения, в результате возникает большой перепад давления. Значение напряжения сдвига зависит от скорости сдвига и вязкости и имеет определяющее значение при измельчении агломератов. Сопоставимой величиной, характеризующей значение напряжения сдвига, является удельная потребляемая мощность (от 0,1 до 0,4 кВт/кг). Так как измельчение протекает эффективнее при повышенной вязкости, а распределение — при низкой, можно попытаться проводить оба эти процесса раздельно или в зонах, оптимально соответствующих этим условиям. При крашении следует еще принимать в расчет эффект изменения характера течения массы расплава в результате введения красящего вещества. Установлена взаимосвязь между маслоемкостью пигмента, его концентрацией и характером течения смеси. Пигмент имеет высокую маслоемкость в тех случаях, когда его поверхность абсорбирует большую массу полимера; при этом повышается вязкость, а вместе с тем, и концентрация полимера. Повышение вязкости объясняется неподвижностью отложившихся на поверхности пигмента частиц расплава. В ходе процесса ни в одной из точек не должна быть превышена верхняя температурная[5, С.253]

Аналогичный подход может быть использован для описания изменения характера молекулярно-массового распределения, а также среднечисловой - или среднемассовой молекулярной массы полимерной цепи в ходе полимеризации рассматриваемого типа. В частности, для среднечисловой молекулярной массы получен следующий результат:[12, С.290]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
4. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
5. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
6. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
9. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
10. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную