На главную

Статья по теме: Концентрациях растворов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При более низких концентрациях растворов тенденция к образованию агрегатов в блоксополимерах снижается. При концентрации 0,01 г/дл кажущийся молекулярный вес снижается до 1,7-10е и при 0,003 г/дл — до 5-Ю5 (по данным светорассеяния). Такая степень агрегации сохраняется в течение нескольких суток и, по-видимому, является равновесной. В более хороших, с термодинамической точки зрения, растворителях, например в циклогексане при 25 °С, агрегация не наблюдается, а происходит лишь уменьшение взаимодействия между полимером и растворителем, а именно, с увеличением содержания стирола уменьшается величина d (posm/c) dc. Взаимодействие снижается, как и следовало ожидать, более интенсивно, чем возрастает содержание стирола: оно уменьшается в два раза при увеличении содержания стирола от 0 до 30%. В растворителях такого или более высокого «качества» представляется возможным получать умеренно концентрированные растворы без образования агрегатов (см. рис. 3). В подобных случаях образование агрегатов зависит лишь от значения критической концентрации и скорости испарения или охлаждения (см. рис. 4). Молекулярная подвижность не играет заметной роли в рассматриваемом явлении, так как полимерная смесь мутнеет в течение нескольких секунд даже при концентрациях[6, С.188]

Разбавленными растворами полимеров обычно называют растворы, в которых концентрация полимера не превышает 1 г/100 мл. При таких концентрациях растворов ниткомолекулярных веществ молекулы растворенного вещества практически друг с другом не взаимодействуют. В растворах полимеров, вследствие очень больших размеров макромолекул» для их полного разделения Требуют* ся большие разбавления. Как уже указывалось выше, в растворах. содержащих 0,5 г/100 мл и даже меньше, уже наблюдается взаимодействие между молекулами полимера, приводящее к обра-зова гшю ассоцЕтатов. Поэтому, если rf мучаются свойства, обуслов^ леннь^ присутствием изолированных макромолекул, то показатели обязательно экстраполируют к бесконечному разбавлению.[1, С.408]

Разбавленными растворами полимеров обычно называют растворы, в которых концентрация полимера не превышает 1 г/100 мл. При таких концентрациях растворов низкомолекулярных веществ молекулы растворенного вещества практически друг с другом не взаимодействуют. В растворах полимеров, вследствие очень больших размеров макромолекул, для их полного разделения Требуются большие разбавления. Как уже указывалось выше, в растворах. содержащих 0,5 г/100 мл и даже меньше, уже наблюдается взаимодействие между молекулами полимера, приводящее к образованию ассоциатпв. Поэтому, если изучаются свойства, обусловленные присутствием изолированных макромолекул, то показатели обязательно экстраполируют к бесконечному разбавлению.[3, С.408]

Интересные результаты получены при исследовании температурной зависимости адсорбции полиэтиленгликолей разного молекулярного веса из раствора в бензоле на алюминии (рис. 38) [99]. При малых концентрациях растворов адсорбция почти не зависит от температуры.[4, С.49]

На рис. XI. 9 и XI. 10 показаны зависимости времени релаксации мелкомасштабного движения для полистирола в дейте-ротолуоле и величины 1/Т2 для полиметилметакрилата в дейте-рохлороформе от Ig-Mn при различных концентрациях растворов. Времена релаксации мелкомасштабного движения определены по температурным зависимостям Т\. Более резкая концентрационная зависимость для Т2 при больших М^ есть[2, С.275]

Вопрос о конформации адсорбированных полимерных цепей и ее зависимости от температуры очень важен, хотя ему посвящено мало исследований. В работе [611 на основании экспериментальных данных авторы приходят к заключению о том, что с ростом температуры происходит расширение клубка, в результате чего подвижность молекулярных сегментов возрастает. Это указывает на возможное разворачивание клубка при повышении температуры при малых концентрациях растворов, вследствие чего и толщина адсорбционного слоя при насыщении соответствует возросшему расстоянию между концами цепей. Зависимость адсорбции от молекулярного веса с изложенной точки зрения можно объяснить тем, что молекулы большого молекулярного веса требуют большего числа точек контакта с поверхностью для адсорбции, что соответствует меньшей толщине слоя и его большей концентрации. Аналогичным образом можно истолковать данные по влиянию природы растворителя, определяющего размер полимерных молекул и их конформацию.[4, С.97]

Во многих работах приведены данные исследования вязкости растворов поливинилового спирта121-133. Найдено соотношение между вязкостью и молекулярным весом для поливинилового спирта, полученного из образцов поливинилацетата низкой конверсии: ш'122 [т|] = 4,28- Ю-2Ма°& и (t)] = 6,70-10-2 Ми°.64; измерена характеристическая вязкость растворов фракций поливинилового спирта в диметилсульфате при 30° С, полученные результаты описываются уравнением [т\] = 3,79- 10-4Р°>84. Это показывает, что диметилсульфат является лучшим растворителем для поливинилового спирта, чем вода. Определена константа Хаггинса К и [ц] для ряда систем, в том числе для поливинилового спирта. При малых концентрациях растворов энергия активации вязкого течения изменяется в зависимости от растворителя до 6 ккал/моль. Из данных измерений по уравнению Цт = т)оП + 2 ф]/1—ф (где цт — вязкость системы, т]о — вязкость растворителя, ф — объем реологически неподвижного раствора) определен реологически связанный объем раствора, который составляет — 40 мл131-132. Исследованы реологические характеристики растворов полимеров 133>134. При добавлении сшивающего агента к разбавленному раствору полимера происхо-. дит сшивание сегментов одной и той же макромолекулы без изменения молекулярного веса полимера, при этом изменение характеристической вязкости описывается соотношением [ц] сшит = = МП — у(У2/У#т)] (где У —количество молекул сшивающего агента да одну линейную молекулу, Nm — число сегментов макромолекулы) 135.[7, С.572]

Проведенные расчеты показали, что с увеличением содержания стекла в растворе происходит изменение обеих величин. Введение наполнителя приводит к росту как эффективной, так и пластической вязкости раствора. Если оценивать степень разрушения структуры раствора по изменению эффективной вязкости при изменении напряжения сдвига в 5 раз, то с увеличением содержания наполнителя в растворе наблюдается постепенное увеличение степени разрушения структуры, сказывающееся в большем падении эффективной вязкости с ростом напряжения. Таким образом, очевидно, что в присутствии наполнителя в растворе не образуются структуры более прочные, чем возникающие в его отсутствие. Наполнитель приводит к дополнительному структурированию, вызывающему возрастание эффективной вязкости. Но взаимодействие между макромолекулами полимера в растворе и частицами наполнителя недостаточно сильное и не приводит к образованию более прочной сетки. Сравнение зависимостей вязкости от концентрации раствора при различных содержаниях наполнителя показывает, что в присутствии наполнителя процессы структурообразования в растворе начинаются при меньших концентрациях растворов.[5, С.192]

Рис. 8. Скорость адсорбции поливинилацетата на поверхности хрома при различных концентрациях растворов:[4, С.25]

О D.Z ОЛ 0,s 0,3 с г/т концентрациях растворов наблю-„ пп ,, , дается большая адсорбция из рас-[4, С.144]

Этим же может быть объяснен аналогичный ход адсорбции для растворов желатины. Введение в растворы мочевины ослабляет межмолекулярные взаимодействия в растворе, вследствие чего уменьшается как размер агрегатов, так и адсорбция в точке максимума. Максимум сдвигается в сторону более высоких концентраций, так как структурообразование в присутствии мочевины происходит при более высоких концентрациях.[4, С.144]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
2. Бартенев Г.М. Физика полимеров, 1990, 433 с.
3. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
4. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
7. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную