На главную

Статья по теме: Органических производных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В последние годы был открыт новый класс органических производных переходных металлов — я-аллильные комплексы, в которых связь металл — углерод является многоцентровой и строение которых моделирует структуру концевого звена при полимеризации диенов. я-Аллильные комплексы обладают каталитической активностью в ряде процессов органического синтеза, в том числе при стереоспецифической полимеризации диеновых углеводородов [46, 47]. В зависимости от природы применяемого переходного металла, атомов и групп, связанных с ним, п-аллильные комплексы могут инициировать полимеризацию бутадиена в сторону образования 1,2-, гране-1,4- или цш>1,4-звеньев [47].[1, С.183]

Кремнийогранические полимеры получают поликонденсацией органических производных кремневой кислоты, у которой одна или две гидр-оксильные группы замещены алкильными или арильными группами, непосредственно связанными с кремнием. Свободные гидроксильные группы могут замещаться галогеном или этерифицироваться.[2, С.402]

В роли металлорганической компоненты катализатора вместо органических производных элементов I—IV групп периодической системы могут также быть использованы я-аллильные комплексы переходных металлов (циркония, хрома, никеля) [53].[1, С.214]

Химия элементоорганических соединений находится сейчас в подобной стадии бурного развития. Это можно видеть из многих примеров. Химия фосфорорганических соединений, долгое время представлявшая лишь теоретический интерес, в связи с начавшимся широким применением различных органических производных фосфора в настоящее время быстро развивается. На развитии химии органических соединений титана и алюминия сильно сказались открытая Циглером в 1954 г. способность алюминийорганических соединений в смеси счетыреххлористым титаном вызывать полимеризацию этилена и установленная Натта в 1955 г. возможность стерео-специфической полимеризации различных непредельных соединений в присутствии указанного комплексного катализатора.[5, С.9]

Таким образом, присоединение бис(л-кротилникельиодида) к 2-алкилбутадиенам является реакцией образования ачти-изомеров 1,2-дизамещенных it-аллильных комплексов, которые затем изоме-ризуются в термодинамически более стабильные сын-изомеры. Возникновение менее стабильных ангы-комплексов, по-видимому, следует рассматривать как общее правило, которому подчиняются реакции присоединения органических производных или гидридов переходных металлов к 1,3-диенам, если они приводят к я-аллиль-ной структуре аддуктов. Появление ангы-комплексов на ранних[1, С.120]

В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационную систему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами и двумя типами поливинилизобутилового эфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей.[3, С.9]

Ионпо-координациопной полимеризацией называют ката штичс-ский процесс образования макромолекул, в котором стадии разрыва связи в мономере предшествует возникновение координационного комплекса между мим и активным центром. Характер и структура комплекса зависят от типа катализатора ь строения мономера Комплоксообразование мономер — катализатор обусловливает возможность синтеза стереорегулярных полимеров из широкого круга мономеров (а-олефиков, диенов, ряда полярных мономеров и др.) Катализаторы, вы ывающие стереорегулироваиие в процессе присоединения мономерных звеньев, называют стсреоспецифическнмн. В качество катализаторов наибольшее распространение получили комгпексныс соединения трех типов соединения Циглера — Натга (открытые в 1954 г. и названные по имени их открывателей), образующиеся при взаимодействии органических производных металлов I—III групп Периодической системы с солями (обычно хлори дами) переходных металлов IV—VIII групп, и-аллильные комплексы переходных металлов; оксидно-металлические катализаторы Варьируя состав н способ получения катализаторов можно регулировать их каталитическую активность и стереос пецифичность действия, т. е способность «отбирать» при полимеризации мономерные звенья определенной конфигурации и ориентировать и,х при подходе к активному центру Состав эти\ катализаторов сложен. Из катализаторов Ципера—Натта в производстве обычно используют комплексы На основе алюми-ниналкилов и производных титана н ванадия. Наибольшее значение эти катализаторы имеют при полимеризации неполярных олефинов (этилен, пропилен) и диенов (бутадиен, изопрен). Например, полиэтилен с высокой стрпенью кристалличности этим методом может быть получен при низком давлении[4, С.138]

Получение органических производных фосфонитридхлорида .... 341[5, С.4]

Получение органических производных фосфонитрилхлорида[5, С.341]

Введение различных органических производных ртути при дает поливинилхлоридным материалам бактерицидные свойства [350]. Добавки хлорпроизводных дифенила и нафталина (вместе с пластификаторами) улучшают диэлектрические свойства и негорючесть пластикатов [396, 397, 565].[10, С.389]

Полиорганотитаноксаны образуются при гидролизе органических производных титана, в которых органические группы связаны с атомами титана через кислород или азот [6—12].[9, С.236]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Амброж И.N. Полипропилен, 1967, 317 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
6. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
7. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
8. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
9. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
10. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
12. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
13. Фабрикант Т.Л. Асбовинил и его применение в химической промышленности, 1958, 80 с.

На главную