На главную

Статья по теме: Полистирола содержащего

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Благодаря прозрачности и высокому коэффициенту преломления полистирол применяется для изготовления оптических стекол, прозрачных моделей и галантереи; физиологическая "же безвредность полистирола, содержащего не более 0,3% свободного мономера, позволяет изготовлять из негр санитарно-гигиенические изделия, тару и упаковку для фармацевтических препаратов и пищевых продуктов.[1, С.94]

Рис. 155. Сополимеризация полистирола, содержащего 25% мономера (а), и по-лиметилметакрилата, содержащего 40% мономера (б), при пластикации с различными мономерами:[2, С.194]

Введение наполнителя приводит к изменению не только температур переходов, но и общего характера термомеханической кривой. На рис. IV. 2 приведены термомеханические кривые типичного аморфного полимера — полистирола, содержащего 5; 10 и 20% (масс.) ^наполнителя [274].- При введении наполнителя происходит повышение температур стеклования Тс и текучести Гт, а также заметное изменение вида кривой. Для наполненного полистирола на термомеханической кривой не обнаруживается отчетливо выраженной площадки, соответствующей области высокоэластического состояния. Это может быть связано с тем, что для данного полимера энтропийная доля упругости в высокоэластическом состоянии невелика и преобладает упругость, связанная с изменением внутренней энергии цепи, что приводит к. росту деформации при повышении температуры. Введение даже малых количеств наполнителя приводит к появлению на термомеханической кривой горизонтального участка. Таким образом, наполненный полимер приобретает характерную для гибкоцепных полимеров область независимости деформации от температуры. При этом, поскольку при введении наполнителя происходит также повышение Гт, область температур, в которой деформация не зависит от температуры, расширяется с увеличением содержания наполнителя. Вместе с тем происходит заметное уменьшение общей деформируемости полимера ~при заданном напряжении.[3, С.151]

Рис. IV. 19. Термомеханические кривые атактического аморфного полистирола, содержащего различные количества стеклянного волокна и 5% пластификатора: /—без наполнителя; 2—4—с 5; 11 и 20% (масс.) стеклянного волокна.[3, С.175]

На рис. IV. 19 приведены типичные термомеханические кривые для атактического полистирола, содержащего 5% пластификатора и различные количества стеклянного волокна. На рис. IV. 20 приведены термомеханические кривые полистирола, амор-физованного путем быстрого охлаждения изотактического, а на рис. IV. 21—типичные кривые для кристаллического полимера, содержащего 5% пластификатора и различные количества наполнителя. Экспериментальные данные показывают, что введение наполнителя в кристаллический полимер очень незначительно влияет на изменение его Гпл. Введение пластификатора в наполненный изотак-тический аморфизованный и кристаллический полимеры приводит к появлению сложной зависимости от содержания пластификатора. Результаты исследования термомеханических свойств указывают на существенное различие в поведении наполненных непластифицированных и пластифицированных полимеров одной и той же химической природы, но находящихся в различном фазовом состоянии. В случае аморфного полимера, как было предположено нами ранее, взаимодействие макромолекул и надмолекулярных структур с поверхностью наполнителя приводит к образованию дополнительной структурной сетки, что и определяет заметное изменение термомеханических свойств. В изотактическом полистироле, где степень упорядоченности макромолекул велика, их регулярное расположение и сильное межмолекулярное взаимодействие друг с другом в кристаллической решетке препятствуют образованию каких-либо прочных связей с поверхностью наполнителя. Промежуточное положение занимает аморфизованный изотактический полистирол.[3, С.175]

Рис. IV. 21. Термомеханические кривые изотактического кристаллического полистирола, содержащего 5% пластификатора: /—без наполнителя; 2, 3-е 5 и 20% (масс.) стеклянного волокна.[3, С.176]

Особенностью реологических свойств наполненных растворов и расплавов является также существование предела текучести, который проявляется, начиная с некоторой критической концентрации наполнителя [357]. Напряжение, соответствующее пределу текучести, возрастает с повышением содержания наполнителя в системе, но не зависит от вязкости исходного полимера [364]. При напряжениях ниже предела текучести течение наполненных систем также возможно, но вязкость при этом очень велика и не зависит от молекулярной массы полимера. При больших напряжениях сдвига структура, образуемая частицами наполнителя, разрушается. Так, например, для расплавов полистирола, содержащего до 54% наполнителя в виде твердых шариков размером 150—260 мкм, был обнаружен предел текучести, который резко возрастает до содержания наполнителя около 12%, а затем до 35%-ной концентрации остается прстояиным и далее вновь возрастает на несколько порядков. При этом введение наполнителя приводит к появлению аномально-вязкого течения в той области скоростей сдвига, в кото-• рой для чистого ПС наблюдается течение с постоянной вязкостью. Все эффекты такого рода связаны с возникновением структурной сетки, образованной частицами наполнителя.[3, С.194]

Протекание реакции между мономером и нереакционноспособной полимерной цепью было подтверждено исследованиями с мечеными атомами. Так, мономерный стирол, меченный С14, был заполимеризован в присутствии неактивного полистирола для получения полистирола, содержащего боковые цепи, образовавшиеся при полимеризации меченого мономера. Аналогичным способом немеченый мономерный винилацетат был заполимеризован в присутствии меченого поливинилацетата. В результате был получен активный полимер, боковые цепи которого неактивны [82].[5, С.264]

Если лабильные атомы расположены на концах цепи, то протекает блок-сополимеризация. Стирол полимеризовали в присутствии четырех-бромистого углерода или трихлорбромметана с целью получения полистирола, содержащего на одном конце цепи атом брома, а на другом группы СВг3 или СС13 соответственно. При растворении этого препарата полистирола в метилметакрилате и последующем облучении ультрафиолетовым светом происходит разрыв связей углерод — бром и образование на концах цепей свободных радикалов, которые инициируют полимеризацию метилметакрилата с образованием блок-сополимера. Возникший одновременно при разрыве связи углерод — бром свободный радикал Вг- инициирует полимеризацию мономера с образованием полиметилметакрилата [127][5, С.283]

Полимеризация стирола в присутствии дигидроперекиси .м-диизо-пропилбензола в качестве инициатора приводит к образованию полистирола, содержащего на обоих концах цепи гидроперекисные группы. В результате эмульгирования раствора этого полимера в метилметакри-лате в присутствии раствора мыла и последующего добавления соли двухвалентного железа для осуществления разрыва гидроперекисных связей образуется блок-сополимер [171].[5, С.295]

Сополимеризация стирола с 1—2 мол.% винилацетата приводит к образованию полистирола, содержащего ацетатные группы, расположенные на большом расстоянии одна от другой. В результате гидролиза ацетатных групп был получен полимер, содержащий соответствующим образом расположенные гидроксильные группы, которые могут инициировать привитую полимеризацию окиси этилена. Ответвления из звеньев[5, С.301]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
2. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
3. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
4. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
5. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
6. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.

На главную