На главную

Статья по теме: Плавления кристаллитов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

У кристаллических полимеров за точку плавления кристаллитов (Тт) принимается температура, при которой исчезают (при равновесных условиях) последние следы кристаллов. Для определения этой температуры с большой точностью разработаны сложные методики [29]. Одним из наилучших методов является определение рентгенографическим способом температуры исчезновения кристаллической решетки при нагревании. Неудобство этого метода заключается в необходимости длительного нагревания {не менее 24 час). Б качестве простейшего лабораторного метода определения кристалличности можно рекомендовать наблюдение двойного лучепреломления в образце полимера с использованием для этой цели поляризационного микроскопа с обогреваемым столиком. Момент исчезновения двойного лучепреломлеЕШя соответствует точке плавления.[6, С.58]

Растворение аморфных полимеров рассматривают как про цесс смешения двух жидкостей; это подтверждается и сопоставлением теплот растворения полимеров с теплотами смешения жидкостей. Для растворения кристаллических веществ требуется затратить дополнительную энергию для разрушения кристаллической решетки, что значительно изменяет величину теплоты растворения. Действительно, растворение кристаллических полимеров проходит значительно труднее и требует большей затраты энергии. Растворимость кристаллических полимеров уменьшается с повышением температуры плавления кристаллитов. Многие кристаллические полимеры (полиэтилен, политетрафторэтилен, поливини-лиденхлорид) удается перевести в раствор только при температуре, близкой к температуре их плавления.[2, С.62]

Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22].[1, С.234]

Температура плавления кристаллитов полиэтилена высокого давления около 115" (110-Л200), т. е. на_ 21° ниже температуры плавления кристаллитов полиметилена. Более широк и температурный интервал перехода полиэтилена в аморфную фазу.[2, С.210]

Молекулярный вес полиангидридов достигает 5000—10 000. Полимеры имеют линейную структуру и отличаются высокой степенью кристалличности. Для полиангидридов алифатических кислот температура плавления кристаллитов составляет 50—100°. Эти полимеры не нашли практического применения, так как ангидридные группы легко подвергаются гидролизу при действии воды.[2, С.428]

Температура размягчения, твердость и прочность изотактического полистирола значительно выше, чем для атактического (аморфного) полистирола*. Молекулярный вес изотактического полимера колеблется в пределах \№—10е, температура плавления кристаллитов изотактического полистирола составляет 210—230°, плотность 1,08—1,09 г/см3. Ниже 210° такой полистирол сохраняет твердое стекловидное состояние. На рис. 97 приведены результаты определений удельного объема аморфного и стереорегулярного полистирола в дилатометре. Температуры стеклования Тс обоих полимеров практически совпадают. При более высокой температуре (выше Тс) удельный объем стереорегулярного полимера изменяется более плавно, вплоть до начала его плавления Гпл.. Ниже Тс неориентированный изотактический полистирол весьма хрупок. Ориентацией при температуре несколько выше 7\. можно повысить его упругость.[2, С.364]

Поливинилиденхлорид плохо растворяется в большинстве органических растворителей. При температуре выше 100° е;го мож;^ растворить в дихлорбензоле или циклогексаноне, но при охлаждении раствора полимер вновь выпадает в осадок в виде белого порошка. Температура плавления кристаллитов поливинилиденхлорида находится в пределах 210—220°. Начиная со 150° наблюдается термическая деструкция полимера, сопровождающаяся выделением хлористого водорода. Интенсивность деструкции заметно возрастает при повышении температуры до 200°. Таким образом, переработка поливинилиденхлорида в изделия связана с большими трудностями.[2, С.517]

С повышением температуры {выше 20° С) напряжение, при котором начинается образование шейки,, и разрывное напряжение понижаются, но протяженность отдельных участков на Кривой практически не изменяется. Напряжение рекристаллизации с повышением температуры снижается настолько, что при 216—218ЭС (температура, близкая л температуре плавления кристаллитов полиамидов) небольшой образец начинает деформироваться с образованием шейки под влиянием усилия, равного собственному весу образца.[5, С.219]

Аморфные полимеры, находящиеся в высокоэластическом состоянии, характеризуются небольшим модулем упругости. Если же аморфный полимер переходит в кристаллическое состояние, то модуль упругости повышается на один-два десятичных порядка. Кристаллические полимеры обладают достаточно высокими модулями упругости вплоть до температуры плавления кристаллитов.[4, С.158]

Путем исследования пленки полимера можно получить много ценных сведений. Так, например, качественная оценка прочности (или отсутствие ее) может дать указание, обладает ли полимер достаточным молекулярным весом. Способность к вытяжке (рис. 14) может быть продемонстрирована на полосках пленки, а образцы вытянутой пленки очень удобны для определения течки плавления кристаллитов (раздел III).[6, С.28]

При охлаждении расплавленного полимера кристалличность обычно снова проявляется, и определение может быть повторено. Если образец не становится кристаллическим после охлаждения, то кристалличность может быть восстановлена обработкой соответствующим растворителем или путем механической обработки Ориентация о кристаллическом полимере не мешает определению температуры плавления кристаллитов, а обычно даже помогает, так как двойное лучепреломление в ориентированных кристаллических образцах обычно ярче и исчезновение окраски наблюдается более отчетливо.[6, С.61]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
7. Амброж И.N. Полипропилен, 1967, 317 с.
8. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
9. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
10. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
11. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
12. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
13. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
14. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
15. Пашин Ю.А. Фторопласты, 1978, 233 с.
16. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
17. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
18. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
19. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
20. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
21. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
22. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
23. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
24. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
25. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
26. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
29. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
30. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
31. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.
32. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.
33. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную