На главную

Статья по теме: Температуры прочность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В-третьих, из рис. 5 видно, что по мере повышения температуры прочность снижается. Это обстоятельство, вероятно, связано с увеличением дефектности кристаллов при повышении температуры. Высказанное предположение подтверждается тем фактом, что усилие, необходимое для переориентации кристаллического полимера (т. е. высота «площадки» на рис. 4), уменьшается с повышением температуры.[10, С.300]

Температура и скорость деформации. С ростом скорости деформации или при понижении температуры прочность увеличивается, а разрывное удлинение проходит через максимум. При средних скоростях деформации lgap примерно пропорционален логарифму скорости деформации. Так, с увеличением скорости деформации полистирола с 5 до 15 мм/с прочность увеличивается с 52 до 67 МПа.[3, С.207]

Поливинилспиртовые волокна (винол, винилон, мьюлон) относят к высокопрочным и высокомодульным волокнам: начальный модуль этого волокна в 2-5 раз выше, чем полиамидного, и в 1,5 раза больше, чем полиэфирного волокна. При повышении температуры прочность поливинилспиртового волокна снижается в меньшей степени, чем у большинства синтетических волокон. Это объясняется наличием поперечных химических связей между макромолекулами. Наряду с достоинствами, поливинилспиртовое волокно имеет и ряд недостатков: более узкая сырьевая база по сравнению с вискозным волокном, необходимость обработки формальдегидом (сшивающим агентом), сравнительно высокая стоимость производства. В связи с этим, а также с учетом высокой гигроскопичности волокон возможности использования их в качестве армирующих материалов в условиях длительного воздействия влаги и полярных жидкостей весьма ограничены.[1, С.175]

На рис. 115 приведена общая зависимость разрывной прочности * от температуры. С падением температуры прочность растет, достигая максимального значения немного ниже Гст, после чего[5, С.422]

Другой особенностью адгезионной прочности является ее зависимость от температуры. С повышением температуры прочность адгезионного соединения обычно снижается, но в ряде случаев это происходит немонотонно. Характерные примеры подобных немонотонных зависимостей адгезионная прочность — температура приведены на рис. IV.39. При анализе этих законо-• мерностей, так же как и при анализе скоростной зависимости прочности, следует исходить из представлений о температурной зависимости прочности твердых тел, и в том числе полимеров. Напомним, что кинетический подход в сочетании с термофлуктуацион-ным механизмом разрушения, впервые сформулированный Сме-калем [263] и Александровым [264] и развитый затем в работах Журкова, Бартенева, Гуля и других исследователей, позволил раскрыть многие особенности процесса разрушения твердых тел [62, с. 44; 63, с. 199; 135; 216—224; 225, с. 228, 285]. Такой[9, С.188]

Уилкокс [1433], исследуя стеклопласты на основе шести видов полиэфирных смол, установил, что при повышении температуры прочность на сжатие и изгиб снижается в большей степени, чем прочность на растяжение. Влияние температуы сказывается больше на прочности, чем на модуле упругости. Прочность при длительном испытании значительно меньше прочности при кратковременной нагрузке. В присутствии воды результаты длительных испытаний снижаются еще больше.[11, С.106]

Как известно, разрушение полимеров происходит не только под действием нагрузки, но и в значительной степени в результате теплового движения кинетических единиц, например сегментов макромолекул. Вследствие флуктуации тепловой энергии происходит разрушение связей, обеспечивающих прочность материала [225, с. 228], а деформирующее напряжение существенно уменьшает энергетический барьер и этим способствует разрушению [220]. Следовательно, в общем, с повышением температуры прочность должна монотонно снижаться.[9, С.190]

Кроме собственно энергии связи устойчивость поликомплекса зависит и от других типов взаимодействий, в частности от взаимодействия между удаленными участками матрицы («объемные» взаимодействия). Изменение температуры и (или) природы растворителя влияет на суммарную энергию Гиббса комплексообра-зования и соответственно на прочность комплекса. Так, в стабилизации комплекса полиметакриловой кислоты с полиэтиленгли-колем в водной среде существенную роль играют гидрофобные взаимодействия, поэтому с повышением температуры прочность комплекса возрастает. При переходе от водной к водно-спиртовой среде изменяется характер взаимодействия и зависимость устойчивости поликомплекса от температуры меняет свой ход на обратный.[2, С.126]

В этом исследовании, как и в ряде других, было показано, что в полимерных материалах, подвергнутых воздействию высоких температур на воздухе, происходят химические процессы, приводящие к термоокислительной деструкции и структурированию. Кроме того, протекают физические процессы, в результате которых изменяется молекулярная и надмолекулярная структура, а также резко изменяются механические свойства. Результаты, полученные с помощью оптической микроскопии, свидетельствуют о том, что продолжительное тепловое воздействие на поликапро-амид при температуре 423 К приводит к некоторому увеличению сферолитов и появлению более четких межсферолитных границ. При увеличении продолжительности теплового воздействия или при повышении температуры прочность чистого поликапроамида по сравнению с исходным резко уменьшается.[7, С.162]

Время от начала действия на образец постоянного напряжения до разрыва образца характеризует его прочность во времени и называется долговечностью. С увеличением прилагаемого напряжения и температуры долговечность резко падает. Экспериментальное определение долговечности трудоемко и длительно, ее обычно рассчитывают по условной прочности. Поведение резин лри растяжении, сжатии, изгибе, кручении сложно и зависит от скорости деформации, температуры, состава и строения резины и других факторов.[4, С.112]

Влияние скорости деформации и температуры. Прочность является функцией скорости деформации при эксплуатации резин и их испытании. Чем выше скорость, тем больше показатель прочности резины. При увеличении скорости растяжения возрастает разрушающее напряжение. Такая прямая зависимость характерна для ненаполненных резин на основе некристаллизующихся каучуков. В других случаях зависимость сложнее.[4, С.112]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
9. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
10. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную