Обозначим термические коэффициенты материала и его температуру в твердой фазе нижним индексом «1». Соответствующие величины в жидкой фазе будем обозначать нижним индексом «2». Изменением объема при затвердевании ввиду наличия непрерывной подпитки будем пренебрегать, следовательно, плотность р как твердой, так и жидкой фазы будет одинакова. Теплофизические характеристики материала формы будем обозначать нижним индексом «О». Введем следующие обозначения для теплофизических характеристик: ср — теплоемкость; ks — коэффициент теплопроводности; Я—скрытая теплота плавления; Тт — температура плавления; Те — температура расплава на выходе.[8, С.443]
Быстрая полимеризация мономеров при низких температурах (термические коэффициенты отрицательны) протекает, безусловно, благодаря инициированию этого процесса свободными макрорадикалами, образованными из макромолекул каучука в условиях приложения сил сдвига. Физические и химические свойства каучука оказывают влияние на реакцию. Самые реакционно-способные каучуки имеют обычно в своей структуре химические связи, лабилизованные ненасыщенностыо углеводородной цепи и способные образовать большое число макрорадикалов. Такие макромолекулярные продукты должны характеризоваться достаточно высокими значениями вязкости и молекулярного веса и обеспечивать оптимальные условия деструкции основы сополимера при мастикации на холоду. В этом аспекте существует аналогия между пластикацией на холоду в присутствии воздуха и полимеризацией, инициированной механохимически в атмосфере азота.[10, С.297]
Формула Симхи —Бойера основана на предположении о том, что тепловое расширение полимеров вблизи Tg можно описать с помощью лишь двух коэффициентов Р; и Pg, которые практически не должны зависеть от температуры. В то же время экспериментальные данные показывают, что термические коэффициенты расширенияполимеров изменяются с температурой как ниже, так и выше температуры стеклования. Результаты экспериментов свидетельствуют о том, что даже вблизи температуры жидкого гелия термические коэффициен: ты расширения всех исследованных полимеров изменяются с температурой и при Т—Ю стремятся к нулю. Для описания теплового расширения аморфных полимеров Ишинабе и Ишикава [39] использовали модельные представления. Они предположили, что полимерные цепи в аморфном состоянии образуют гексагональную (координационное число 6) или тетрагональную (координационное число 4) решетку. Предполагалось, что существует асимметрия поля дисперсионных сил, связанных с парным взаимодействием между повторяющимися единицами различных цепей. Полная потенциальная энергия находилась путем суммирования парных взаимодействий по всей решетке, исключая собственную энергию каждой полимерной цепи. Такой подход в сущ-[7, С.169]
При действии агрессивных сред на связующее — полимерную основу композиционных материалов — протекают реакции окисления, гидролиза, дегидратации и др., которые, однако, характеризуются своими особенностями, обусловленными гетерогенностью системы. Разрушение начинается с поверхности раздела полимер — наполнитель вследствие ухудшения их адгезионных свойств, ослабления и нарушения связи между ними. Агрессивная среда может способствовать также вымыванию полимерного связующего. Оба процесса приводят к нарушению структуры композиционного материала. Кроме того, наполнитель (например, стеклянное волокно) и связующее имеют различные термические коэффициенты расширения, поэтому при нагревании изменяются внутренние напряжения, образуются пустоты, поры, трещины и другие дефекты и облегчается диффузия среды в композиционный материал, ускоряется его разрушение.[4, С.16]
Для характеристики теплостойкости органических стекол определяют температуру размягчения, термомеханические свойства, позволяющие установить температурные области различных состояний полимера, теплостойкость, стойкость к тепловому старению, а также теплопроводность, температуропроводность, теплоемкость и термические коэффициенты линейного расширения.[5, С.218]
Температуры стеклования, определяемые разными методами, не всегда совпадают друг с другом, что связано с кинетическим характером этого процесса и участием в нем различных структурных элементов. Стеклование полимерных систем описывается в рамках теории свободного объема. Развитие ее в работах Симхи и Бойера [200] и Вильямса— Лэндела — Ферри [198] позволило установить, что для большинства систем величина произведения (аш — коэффициенты расширения соответственно выше и ниже температуры стеклования) и что доля свободного объема при Тс равна универсальному ее значению 0,025.[6, С.240]
До сих пор не существует достаточно строгой и последовательной теории теплового расширения полимеров. Большая часть теоретических и экспериментальных работ посвящена в основном изучению стеклования и изменению термического коэффициента расширения полимеров вблизи Tg. Иногда полагают, что полимеры имеют два термических коэффициента расширения. Один из них, рё, считается не зависящим от температуры при T<,Tg, а второй, рг, — слабо зависящим от температуры (при T>Tg) и большим, чем первый. Если обозначить через р; и pg термические коэффициенты расширения соответственно выше и ниже температуры стеклования, то, согласно Симхе и Бойеру [37][7, С.168]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.