На главную

Статья по теме: Образующейся полимерной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Совсем необязательно, чтобы адсорбированный компонент стабилизатора по составу был идентичен образующейся полимерной дисперсной фазе, например, поливинилацетат можно использовать как нерастворимый компонент стабилизатора при дисперсионной полимеризации акриловых мономеров [5]. Нерастворимость в дисперсионной среде — основное требование к якорной группе, но ее эффективность может быть значительно увеличена, если эта группа обладает специфическим сродством к диспергированному полимеру.[4, С.58]

При сшивании линейных макромолекул высокой мол. массы короткими поперечными связями структура образующейся полимерной сетки близка к тетраэдриче-скоп, в к-рой поперечные связи являются узлами сетки. Глубина сшивания характеризуется: 1) показато-л о м с ш н в а н и я ус — числом поперечных связей пли сшитых элементарных повторяющихся звеньев, приходящихся на одну макромолекулу; 2) с т о п о п ь ю[5, С.327]

Инициирующая реакцию полимеризации связь А1—С и молекула мономера фиксированы в строго определенном положении относительно адсорбирующей поверхности и относительно Друг друга. Положение мономера в пространстве определяется строением и конфигурацией конца образующейся полимерной цепи, характером и расположением заместителей в каталитическом комплексе и свойствами примыкающей поверхности. Новые молекулы мономера присоединяются к растущей цепи в положе-[1, С.146]

Степень завершенности реакции ступенчатого синтеза полимеров характеризуется количеством прореагировавших функциональных групп за определенный период времени их взаимодействия. При количественном рассмотрении этого фактора обычно руководствуются так называемым принципом Флори: кинетика взаимодействия функциональных групп друг с другом не зависит от длины образующейся полимерной цепи, а определяется только концентрацией функциональных групп. До определенного размера образующихся молекул этот принцип справедлив, т. е. он выполняется, пока подвижность полимерной молекулы не станет лимитирующим фактором взаимодействия функциональных групп. Это объясняется тем, что по мере роста макромолекул уменьшается их подвижность, нарастает вязкость системы и снижается концентрация остающихся свободных функциональных групп. Эти обстоятельства вносят существенные коррективы в принцип независимости реакционноспособности функциональных групп от длины цепи, однако в общем рассмотрении кинетических особенностей реакций он может быть принят.[2, С.73]

Еще более высокомолекулярные линейные полимеры получают переэтерификацией метиловых или этиловых эфиров двухосновных кислот гликолями, так как выделяющийся при этом спирт (метиловый или этиловый) легче удаляется из сферы реакции, чем вода. В связи с этим для получения линейных высокомолекулярных полиэфиров предпочитают использовать третий метод поликонденсации—переэтерификацию. В процессе поликонденсации бифункциональных веществ количество функциональных групп в образующейся полимерной цепи на всех ступенях реакции остается постоянным (две группы). Такую реакцию очень легко прекратить экранированием хотя бы одной функциональной группы.[1, С.418]

Молекула мономера, становящаяся лигандом координационного комплекса, структурно отлична от свободной молекулы: длиннее связь С=С, изменены валентные углы у двойной связи, а также ее поляризация. Все эти факты свидетельствуют о том, что в результате координирования с катализатором мономер проходит своего рода «подготовку» к реакциям присоединения, частным случаем к-рой является полимеризация. Как будет показано ниже, комплексообразование в К.-и. п. вызывает ряд эффектов, сказывающихся как на характере протекания самого полимеризационного процесса, так и на структуре образующейся полимерной цени.[6, С.547]

Молекула мономера, становящаяся лигандом координационного комплекса, структурно отлична от свободной молекулы: длиннее связь С=С, изменены валентные углы у двойной связи, а также ее поляризация. Все эти факты свидетельствуют о том, что в результате координирования с катализатором мономер проходит своего рода «подготовку» к реакциям присоединения, частным случаем к-рой является полимеризация. Как будет показано ниже, комплексообразование в К.-и. п. вызывает ряд эффектов, сказывающихся как на характере протекания самого полимеризационного процесса, так и на структуре образующейся полимерной цепи.[7, С.544]

Кинетич. исследования показали, что циклизация формально подчиняется ур-нию первого порядка. Так, для имидизации полиамидокислот в р-ре порядок реакции оказался равным и«1,1 с константой скорости 3,87-Ю-3 сек~1 (при 80°С). Если темп-pa твердофазной циклизации превышает темп-ры стеклование нреполи-мера и продукта циклизации, реакция также подчиняется ур-нию первого порядка. Если же темп-pa реакции превышает темп-ру стеклования преполимора, но ниже темп-ры стеклования продукта циклизации, начальный период циклизации подчиняется ур-нию первого порядка, но как только темп-pa стэкловапия образующейся полимерной цени достигает темп-ры реакции, скорость процесса значительно уменьшается. С дальнейшим ростом темп-ры стеклования образующегося полимера реакция тормозится и в какой-то момент практически заканчивается, хотя степень циклизации может и не достигнуть теоретически возможного значения.[5, С.44]

Кинетич. исследования показали, что циклизация формально подчиняется ур-нию первого порядка. Так, для имидизации полиамидокислот в р-ре порядок реакции оказался равным и га 1,1 с константой скорости 3,87 -Ю"3 сек~г (при 80°С). Если темп-pa твердофазной циклизации превышает темп-ры стеклования преполи-мера и продукта циклизации, реакция также подчиняется ур-нию первого порядка. Если же темп-pa реакции превышает темп-ру стеклования преполимера, но ниже темп-ры стеклования продукта циклизации, начальный период циклизации подчиняется ур-нию первого порядка, но как только темп-pa стеклования образующейся полимерной цепи достигает темп-ры реакции, скорость процесса значительно уменьшается. С дальнейшим ростом темп-ры стеклования образующегося полимера реакция тормозится и в какой-то момент практически заканчивается, хотя степень циклизации может и не достигнуть теоретически возможного значения.[8, С.44]

Кинетические характеристики свободно-радикальной дисперсионной полимеризации с использованием растворимых реагентов, детально рассмотренные в разделе IV.4, позволяют использовать эти процессы для непрерывной полимеризации. В противоположность эмульсионной водной полимеризации здесь исходные реагенты образуют гомогенную систему, и высокая скорость полимеризации не зависит от размера образующихся частиц полимера, легко регулируемого количеством используемого стабилизатора. Описан процесс непрерывной дисперсионной полимеризации метил метакр ил ата одного или в смеси с другими акриловыми мономерами [58], проводимой в реакторе с мешалкой, соединенном с испарителем для получения порошка полимера непосредственно из образующейся полимерной дисперсии.[4, С.249]

В ходе этих перестроек восстановленный вновь четырехчленный цикл н каталитическом комплексе содержит в своей структуре один из атомов углерода молекулы мономера, а исходная этильная группа выделяется из этого цикла вместе с другим атомом углерода молекулы винилового мономера. Таким образом, разрыв л-связи в молекуле мономера приводит к образованию rr-связи молекулы мономера с атомом углерода этильной группы н возникновению формально прежней, а по существу новой структуры исходного каталитического комплекса трихлорида титана и триэтилалюминия. В нем с атомами титана и алюминия соединен теперь атом углерода молекулы мономера. Эта перестройка и лежит в основе сте-реоспецифического катализа при ионно-координационной полимеризации. Следующая молекула мономера вступает в реакцию таким же образом, как и первая, и происходит постепенное вытеснение образующейся полимерной молекулы из структуры комплексного катализатора. При этом заместитель при атоме углерода в молекуле мономера сохраняет строго определенное пространственное расположение относительно плоскости основной цепи:[2, С.49]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
5. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
6. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
7. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
8. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
9. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную