На главную

Статья по теме: Повышается стойкость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Анализ данных вышеприведенной таблицы показывает, что ПВСКЦ и ПВСКС улучшают технологические свойства смесей: снижается вязкость и повышается стойкость к преждевременной вулканизации. Помимо этого, они даже при введении 1,0 масс.части увеличивают прочностные показатели и величину адгезии к капроновому корду. В динамических условиях модифицированные резины почти вдвое устойчивее к усталости и меньше разогреваются (At), что очень важно для их использования в шинах.[4, С.277]

Результаты испытаний на стойкость к гидроабразивной эрозии представлены в табл. 73. С увеличением эластичности покрытия значительно повышается стойкость к гидроабразивной эрозии. Так, для покрытия с эластичностью по отскоку 28% коэффициент износостойкости равен 0,64, а при эластичности 53% (при той же твердости материала) коэффициент износостойкости — 7,5. Таким образом, уровень эластичности покрытия играет существенную роль при гидроабразивной эрозии. В отличие от абразивной эрозии, прочность покрытия не оказывает существенного влияния на стойкость к гидроабразивной эрозии. Уменьшение прочности покрытия с 19,5 до 11,0 МПа (при одинаковой эластичности) практически не сказывается на стойкости к гидроабразивнрй эрозии. Одной из причин этого является, по-видимому, то, что в условиях гидроабразивной эрозии облегчается отвод образующегося тепла через постоянно обновляющуюся водную поверхность и, таким образом, наиболее разрушительный фактор — температурное влияние — здесь сведен к минимуму. При абразивной эрозии происходит сильное разогревание материала и быстрое разрушение его, особенно в случае пониженной прочности.[7, С.166]

Детально исследовано влияние радиационного облучения на физические свойства полиэтилена 2409-2426 Отмечено, что в результате облучения повышается стойкость полиэтилена к деформации при нагревании, а также к растрескиванию. При этом не происходит ухудшения электрических свойств, прочности и других ценных свойств полиэтилена2409. Например, у полиэтилена типа марлекс-50 прочность на разрыв под влиянием р-об-лучения (доза 50-Ю6 рентген) изменяется от 290 до 320 кГ/см2. Более эффективным оказалось у~°блуче1ние. При дозе 10-ЛО6 рентген прочность на разрыв возрастала до ^ 500 кГ/см2, а ори дозе 100-106 рентген — до ^ 585 кГ/см2. Установлено, что в результате облучения происходит образование поперечных связей в полиэтилене, способствующее улучшению физико-механических свойств (теплостойкости, эластичности и др.)24Ш. Изучение анизотропных изменений в системе фибриллярных макромолекул с весьма высокой осевой ориентацией в процессе «сшивания полимера при воздействии ионизирующего облучения показало, что длина в изотропном состоянии в результате процесса сшивания возрастает с ростом степени сшивания2411. Для расплава получены значительно большие удлинения. При облучении полиэтилена в расплавленном состоянии размеры кристаллитов неограниченно уменьшаются с увеличением дозы облучения2414. Скорость роста сферолитов при равной степени переохлаждения не зависит от дозы облучения; температуры плавления полиэтилена (марлекс-50) составляли при облучении дозами 0, 20, 40 и и 100 мрентген— 138, 128, 121 и 113° С соответственно2415'2416. Описано влияние радиации на индекс расплава 2417.[9, С.286]

В 1839 г. был открыт способ вулканизации каучука путем нагревания его смеси с серой. Вулканизация коренным образом изменяет свойства каучука: повышается его прочность и эластичность, он становится более стойким к действию различных растворителей, повышается стойкость к нагреванию и к изменению температуры, каучук теряет липкость.[1, С.16]

Одни сажи обладают кислотным, другие — основным характером; большая их часть гидрофобна, некоторые (белая сажа) — гидрофильны; одни смачиваются средой хуже, другие — лучше; все это определяет их химическую стойкость в агрессивных средах. Так, при введении гидрофобных углеродных саж повышается стойкость резин в минеральных кислотах, при введении гидрофильных саж стойкость резин, наоборот, понижается, так же как и в других водных растворах, но стойкость в органических кислотах возрастает.[6, С.17]

Добавление эфиров. При добавлении эфиров ортокремневой кислоты к твердым полимерам повышается их водостойкость, твердость, адгезия (к стеклу, керамическим изделиям, металлам и дереву), долговечность и гладкость поверхности; ускоряется отверждение, понижается горючесть и плавкость органического полимера, повышается стойкость к органическим растворителям, щелочам и кислотам, а также термическая устойчивость.[8, С.317]

Указанный процесс ускоряется в присутствии щелочей. Некоторые аминосоединения, например диаминодифенилметан и пирокатехин, также являются активаторами вулканизации 180> 181 полихлоропре-на ЭС. Образующиеся поперечные связи придают вулканизатам повышенную термостойкость и усталостную выносливость. При вулканизации ЭС хлоропреновых каучуков повышается стойкость резиновых смесей к подвулканизации, улучшаются динамические свойства вулканизатов и прочность связи с латунированным ме-таллокордом. Максимальная прочность достигается при содержании смолы Э-41 8—9 вес.л. на 100 вес. ч. каучука. Эпоксидные вул-канизаты наирита несколько уступают стандартным по температу-ростойкости и стойкости к тепловому старению, Введение окислов металлов в смеси, содержащие ЭС, повышает скорость и степень вулканизации. При увеличении молекулярного веса смолы содержание ее в смеси для достижения тех ж.е показателей также должно повышаться. Введение 3 вес. ч. смолы Э-41 в ненаполненную смесь на основе наирита повышает прочность крепления к металлу с 28,6 до 50,8—58,4 кгс/см2. Аналогичные результаты получены при вулканизации наирита диглицидным эфиром 2,2-диокси-1,1-дина-фтилметана ДГЭ, синтезированным конденсацией диоксинафтил-метана с эпихлоргидрином в присутствии щелочи. Резины, вулканизованные ДГЭ, обладают высокой стойкостью к действию агрессивных сред 182:[5, С.182]

Повышение адгезионных свойств достигается при частичной замене поли-хлоропрена хлорбутилкаучуком, хлорна-иритом или хлоркаучуком, который представляет собой тонкоразмельченный белый порошок с 65% хлора, получающийся из натурального или синтетического ^ис-1,4-изопренового каучука. Хлоркаучук кристаллизуется быстрее полихлоропрена. При замене 30—40% полихлоропрена на хлоркаучук прочность крепления повышается на 15—20%. Одновременно повышается стойкость клеевого шва к действию масел, растворителей,. кислот, щелочей и прочих агрессивных сред.[5, С.199]

Несмотря на широкое применение, ПММА обладает недостаточной светочувствительностью (0,6—0,9 Дж/см2), низкой адгезией к подложке, малой стойкостью к термическим деформациям, низкой стабильностью при плазменном травлении подложек. Поэтому предлагается сенсибилизировать ПММА [9]. Оказалось, что содержащие грег-бутильные группы бензол, бензойная кислота, фенол, гидрохинон при содержании до 10% (масс.) 4-кратно повышают относительную светочувствительность ПММА. При этом удается достичь разрешения до 0,5 мкм при толщине слоя 0,5 мкм. Одновременно повышается стойкость слоя и к травлению плазмой CF4—О2, по-видимому, вследствие сохранения сенсибилизатора в проявленном слое,[3, С.178]

Из силиконовых полимеров наиболее широко применяются линейные диметилполисилоксаны. Кроме метильных радикалов, эластомеры могут содержать и другие алифатические заместители,—этильные, пропильные, бутильные радикалы, галоидиро-ванные заместители—хлорэтил- и фторметильные радикалы 1136], а также галоидированные и негалоидированные фенильные радикалы [1998, 2180]. Объемистые заместители, особенно фенильные радикалы, в количестве около 10% мол. понижают температуру затвердевания приблизительно на 40°, подобно тому, как они понижают температуру застывания ранее описанных жидких метилфенилсилоксанов. Эластомеры этого типа производят в промышленных масштабах для использования при низких температурах. В присутствии фенильных радикалов повышается стойкость полимеров по отношению к метилсиликоновым жидкостям, а также их огнестойкость [2180]. Улучшение свойств при низких температурах достигается также в результате частичного разветвления метилсиликоновой цепочки, т. е. путем совместного гидролиза монофункциональных, дифункциональных и три-функциональных мономеров с таким же средним соотношением R/Si, как у линейных эластомеров [341]. Соединения с ненасыщенными заместителями, заполимеризованные в присутствии перекисных катализаторов, образуют также легко отверждаю-щиеся полимеры повышенной твердости. При малом содержании низших олефиновых заместителей (приблизительно до 15% мол.) стойкость к окислению не снижается [999].[8, С.365]

Наряду с рассмотренными выше применяют и другие методы направленного изменения технически важных свойств полипропилена. В результате нитрования порошкообразного полимера или волокон азотной кислотой при 20—130°С [120—122] или двуокисью азота [121, 123—125] улучшается его способность окрашиваться основными и дисперсными красителями, а благодаря наличию функциональных групп —ООН и —ONO к полипропилену можно прививать различные мономеры. С этой же целью полипропилен нитрозируют NOC1 при облучении ультрафиолетовым светом [126], обрабатывают газообразным или жидким фосгеном в серной кислоте или циклогексане [127, 128], сульфируют [82, 85, 104, 106] или сульфокисляют при действии радиационного облучения [95]. После обработки поверхности сульфированной полипропиленовой пленки водным раствором поливинилового спирта она становится непроницаемой для масел и паров органических растворителей [129]. Введение спиртовых групп в макромолекулу полипропилена достигается в результате окисления полипропилена и последующего восстановления гидроперекисных групп с помощью HI или триал-кнлалюминия [130]; при этом повышается стойкость к окислению и старению и появляется возможность окрашивания азокрасителями.[2, С.140]

* В результате конденсации понижается температура отверждения (на 50—75°), термопластичность и истирание, повышается стойкость к растворителям и общая стойкость.[8, С.386]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Белозеров Н.В. Технология резины, 1967, 660 с.
2. Амброж И.N. Полипропилен, 1967, 317 с.
3. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
6. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
7. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
8. Бажант В.N. Силивоны, 1950, 710 с.
9. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную